cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083087 Square table read by antidiagonals which forms a permutation of the natural numbers: T(n,0) = floor(n*x/(x-1))+1, T(n,k+1) = ceiling(x*T(n,k)), for n>=0, k>=0, where x = 1 + sqrt(2).

This page as a plain text file.
%I A083087 #18 Sep 08 2022 08:45:10
%S A083087 1,3,2,8,5,4,20,13,10,6,49,32,25,15,7,119,78,61,37,17,9,288,189,148,
%T A083087 90,42,22,11,696,457,358,218,102,54,27,12,1681,1104,865,527,247,131,
%U A083087 66,29,14,4059,2666,2089,1273,597,317,160,71,34,16,9800,6437,5044,3074
%N A083087 Square table read by antidiagonals which forms a permutation of the natural numbers: T(n,0) = floor(n*x/(x-1))+1, T(n,k+1) = ceiling(x*T(n,k)), for n>=0, k>=0, where x = 1 + sqrt(2).
%C A083087 The array in A083087 is the dispersion of the sequence given floor(n+1+n*sqrt(2)). The Mathematica program at A191438 generates A083087 using f[n_]:=Floor[n*x+n+1] instead of f[n_]:=Floor[n*x+n]. - _Clark Kimberling_, Jun 04 2011
%F A083087 T(n,k+1) = 2*T(n,k) + T(n,k-1) + 1 for n>=0, k>=1.
%e A083087 Table begins:
%e A083087    1  3   8  20  49  119  288 ...
%e A083087    2  5  13  32  78  189  457 ...
%e A083087    4 10  25  61 148  358  865 ...
%e A083087    6 15  37  90 218  527 1273 ...
%e A083087    7 17  42 102 247  597 1442 ...
%e A083087    9 22  54 131 317  766 1850 ...
%e A083087   11 27  66 160 387  935 2258 ...
%e A083087   12 29  71 172 416 1005 2427 ...
%e A083087   14 34  83 201 486 1174 2835 ...
%e A083087   16 39  95 230 556 1343 3243 ...
%e A083087   18 44 107 259 626 1512 3651 ...
%e A083087   19 46 112 271 655 1582 3820 ...
%e A083087   21 51 124 300 725 1751 4228 ...
%e A083087   23 56 136 329 795 1920 4636 ...
%e A083087   24 58 141 341 824 1990 4805 ...
%t A083087 (See Comments.)
%o A083087 (Magma) z:=10; x:=1+Sqrt(2); S:=[]; for n in [0..z] do for k in [0..n] do if n-k eq 0 then Append(~S, Floor(n*x/(x-1))+1); else Append(~S, Ceiling(x*S[k+1+(n*(n-1) div 2)])); end if; end for; end for; S; // _Klaus Brockhaus_, Jan 04 2011
%Y A083087 Cf. A083088 (first column), A048739 (first row), A083090 (diagonal), A083091 (antidiagonal sums), A083044, A083047, A083050.
%K A083087 nonn,tabl
%O A083087 0,2
%A A083087 _Paul D. Hanna_, Apr 21 2003