cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083093 Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 3.

This page as a plain text file.
%I A083093 #82 Apr 30 2025 14:08:02
%S A083093 1,1,1,1,2,1,1,0,0,1,1,1,0,1,1,1,2,1,1,2,1,1,0,0,2,0,0,1,1,1,0,2,2,0,
%T A083093 1,1,1,2,1,2,1,2,1,2,1,1,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,1,1,1,2,
%U A083093 1,0,0,0,0,0,0,1,2,1,1,0,0,1,0,0,0,0,0,1,0,0,1,1,1,0,1,1,0,0,0,0,1,1,0,1,1
%N A083093 Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 3.
%C A083093 Start with [1], repeatedly apply the map 0 -> [000/000/000], 1 -> [111/120/100], 2 -> [222/210/200]. - _Philippe Deléham_, Apr 16 2009
%C A083093 {T(n,k)} is a fractal gasket with fractal (Hausdorff) dimension log(A000217(3))/log(3) = log(6)/log(3) = 1.63092... (see Reiter reference). Replacing values greater than 1 with 1 produces a binary gasket with the same dimension (see Bondarenko reference). - _Richard L. Ollerton_, Dec 14 2021
%D A083093 Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
%D A083093 Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
%H A083093 Reinhard Zumkeller, <a href="/A083093/b083093.txt">Rows n = 0..120 of triangle, flattened</a>
%H A083093 J.-P. Allouche, F. von Haeseler, H.-O. Peitgen, and G. Skordev, <a href="https://doi.org/10.1016/0166-218X(94)00132-W">Linear cellular automata, finite automata and Pascal's triangle</a>, Disc. Appl. Math. 66 (1996) 1-22.
%H A083093 Boris A. Bondarenko, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/pascal.html">Generalized Pascal Triangles and Pyramids</a>, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see pp. 130-132.
%H A083093 Ilya Gutkovskiy, <a href="/A275198/a275198.pdf">Illustrations (triangle formed by reading Pascal's triangle mod m)</a>
%H A083093 Lin Jiu and Christophe Vignat, <a href="http://arxiv.org/abs/1602.04149">On Binomial Identities in Arbitrary Bases</a>, arXiv:1602.04149 [math.CO], 2016.
%H A083093 Y. Moshe, <a href="http://dx.doi.org/10.1016/S0022-314X(03)00103-3">The density of 0's in recurrence double sequences</a>, J. Number Theory, 103 (2003), 109-121.
%H A083093 Y. Moshe, <a href="http://dx.doi.org/10.1016/j.disc.2005.03.022">The distribution of elements in automatic double sequences</a>, Discr. Math., 297 (2005), 91-103.
%H A083093 A. M. Reiter, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Issues/31-2.pdf">Determining the dimension of fractals generated by Pascal's triangle</a>, Fibonacci Quarterly, 31(2), 1993, pp. 112-120.
%H A083093 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>
%F A083093 T(i, j) = binomial(i, j) mod 3.
%F A083093 T(n+1,k) = (T(n,k) + T(n,k-1)) mod 3. - _Reinhard Zumkeller_, Jul 11 2013
%F A083093 T(n,k) = Product_{i>=0} binomial(n_i,k_i) mod 3, where n = Sum_{i>=0} n_i*3^i and k = Sum_{i>=0} k_i*3^i, 0<=n_i, k_i <=2 [Allouche et al.]. - _R. J. Mathar_, Jul 26 2017
%e A083093 .            Rows 0 .. 3^3:
%e A083093 .    0:                             1
%e A083093 .    1:                            1 1
%e A083093 .    2:                           1 2 1
%e A083093 .    3:                          1 0 0 1
%e A083093 .    4:                         1 1 0 1 1
%e A083093 .    5:                        1 2 1 1 2 1
%e A083093 .    6:                       1 0 0 2 0 0 1
%e A083093 .    7:                      1 1 0 2 2 0 1 1
%e A083093 .    8:                     1 2 1 2 1 2 1 2 1
%e A083093 .    9:                    1 0 0 0 0 0 0 0 0 1
%e A083093 .   10:                   1 1 0 0 0 0 0 0 0 1 1
%e A083093 .   11:                  1 2 1 0 0 0 0 0 0 1 2 1
%e A083093 .   12:                 1 0 0 1 0 0 0 0 0 1 0 0 1
%e A083093 .   13:                1 1 0 1 1 0 0 0 0 1 1 0 1 1
%e A083093 .   14:               1 2 1 1 2 1 0 0 0 1 2 1 1 2 1
%e A083093 .   15:              1 0 0 2 0 0 1 0 0 1 0 0 2 0 0 1
%e A083093 .   16:             1 1 0 2 2 0 1 1 0 1 1 0 2 2 0 1 1
%e A083093 .   17:            1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1
%e A083093 .   18:           1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1
%e A083093 .   19:          1 1 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 1 1
%e A083093 .   20:         1 2 1 0 0 0 0 0 0 2 1 2 0 0 0 0 0 0 1 2 1
%e A083093 .   21:        1 0 0 1 0 0 0 0 0 2 0 0 2 0 0 0 0 0 1 0 0 1
%e A083093 .   22:       1 1 0 1 1 0 0 0 0 2 2 0 2 2 0 0 0 0 1 1 0 1 1
%e A083093 .   23:      1 2 1 1 2 1 0 0 0 2 1 2 2 1 2 0 0 0 1 2 1 1 2 1
%e A083093 .   24:     1 0 0 2 0 0 1 0 0 2 0 0 1 0 0 2 0 0 1 0 0 2 0 0 1
%e A083093 .   25:    1 1 0 2 2 0 1 1 0 2 2 0 1 1 0 2 2 0 1 1 0 2 2 0 1 1
%e A083093 .   26:   1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
%e A083093 .   27:  1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 .
%e A083093 - _Reinhard Zumkeller_, Jul 11 2013
%p A083093 A083093 := proc(n,k)
%p A083093     modp(binomial(n,k),3) ;
%p A083093 end proc:
%p A083093 seq(seq(A083093(n,k),k=0..n),n=0..10) ; # _R. J. Mathar_, Jul 26 2017
%t A083093 Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 3] (* _Robert G. Wilson v_, Jan 19 2004 *)
%o A083093 (Haskell)
%o A083093 a083093 n k = a083093_tabl !! n !! k
%o A083093 a083093_row n = a083093_tabl !! n
%o A083093 a083093_tabl = iterate
%o A083093    (\ws -> zipWith (\u v -> mod (u + v) 3) ([0] ++ ws) (ws ++ [0])) [1]
%o A083093 -- _Reinhard Zumkeller_, Jul 11 2013
%o A083093 (Magma) /* As triangle: */ [[Binomial(n,k) mod 3: k in [0..n]]: n in [0.. 15]]; // _Vincenzo Librandi_, Feb 15 2016
%o A083093 (Python)
%o A083093 from sympy import binomial
%o A083093 def T(n, k):
%o A083093     return binomial(n, k) % 3
%o A083093 for n in range(21): print([T(n, k) for k in range(n + 1)]) # _Indranil Ghosh_, Jul 26 2017
%o A083093 (Python)
%o A083093 from math import comb, isqrt
%o A083093 def A083093(n):
%o A083093     def f(m,k):
%o A083093         if m<3 and k<3: return comb(m,k)%3
%o A083093         c,a = divmod(m,3)
%o A083093         d,b = divmod(k,3)
%o A083093         return f(c,d)*f(a,b)%3
%o A083093     return f(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),n-comb(r+1,2)) # _Chai Wah Wu_, Apr 30 2025
%Y A083093 Cf. A007318, A051638 (row sums), A090044, A047999, A034931, A034930, A008975, A034932, A062296, A006047.
%Y A083093 Cf. A006996 (central terms), A173019, A206424, A227428.
%Y A083093 Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), (this sequence) (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930(m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
%K A083093 easy,nonn,tabl
%O A083093 0,5
%A A083093 _Benoit Cloitre_, Apr 22 2003