This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083095 #42 Jun 27 2025 01:06:40 %S A083095 0,2,5,6,14,15,18,20,41,42,45,47,54,56,59,60,122,123,126,128,135,137, %T A083095 140,141,162,164,167,168,176,177,180,182,365,366,369,371,378,380,383, %U A083095 384,405,407,410,411,419,420,423,425,486,488,491,492,500 %N A083095 a(n) = A083094(n)/4. %C A083095 Is this the same as A083097? - _Andrew S. Plewe_, May 30 2007 %H A083095 Hugo Pfoertner, <a href="/A083095/b083095.txt">Table of n, a(n) for n = 1..16384</a> (terms 1..106 from Paul F. Marrero Romero) %F A083095 Apparently (2*a(n)) mod 3 = A010060(n-1), the Thue-Morse sequence. %F A083095 Numbers k such that C(4*k, 2*k) == 1 (mod 3). - _Benoit Cloitre_, Jul 30 2003 %F A083095 Numbers k such that the base-3 digits of 2k contains no 2's, i.e. a(n) = A074939(n-1)/2. - _Chai Wah Wu_, Jun 26 2025 %t A083095 Select[Range[0,2000], OddQ[Sum[Mod[Binomial[#,j],3],{j,0,#}]]&]/4 (* _Paul F. Marrero Romero_, Dec 28 2024 *) %o A083095 (Python) %o A083095 def A083095(n): return int(bin(((m:=n-1).bit_count()&1)+(m<<1))[2:],3)>>1 # _Chai Wah Wu_, Jun 26 2025 %Y A083095 Cf. A010060, A051638, A083093, A083094, A083097, A074939. %K A083095 nonn,easy %O A083095 1,2 %A A083095 _Benoit Cloitre_, Apr 22 2003 %E A083095 More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 29 2003