This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083103 #43 Feb 07 2025 22:47:58 %S A083103 1786772701928802632268715130455793, %T A083103 1059683225053915111058165141686995, %U A083103 2846455926982717743326880272142788,3906139152036632854385045413829783,6752595079019350597711925685972571,10658734231055983452096971099802354 %N A083103 Second-order linear recurrence sequence with a(n) = a(n-1) + a(n-2), with initial terms 1786772701928802632268715130455793, 1059683225053915111058165141686995. %C A083103 a(0) = 1786772701928802632268715130455793, a(1) = 1059683225053915111058165141686995. This is the second-order linear recurrence sequence with a(0) and a(1) coprime that R. L. Graham in 1964 stated did not contain any primes. It has not been verified. Graham made a mistake in the calculation that was corrected by D. E. Knuth in 1990. %D A083103 P. Ribenboim, The Little Book of Big Primes. Springer-Verlag, 1991, p. 178. %H A083103 Indranil Ghosh, <a href="/A083103/b083103.txt">Table of n, a(n) for n = 0..4617</a> %H A083103 R. L. Graham, <a href="http://www.jstor.org/stable/2689243">A Fibonacci-Like sequence of composite numbers</a>, Math. Mag. 37 (1964) 322-324 %H A083103 D. Ismailescu, J. Son, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Ismailescu/ism8.html">A New Kind of Fibonacci-Like Sequence of Composite Numbers</a>, J. Int. Seq. 17 (2014) # 14.8.2. %H A083103 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A083103 D. E. Knuth, <a href="http://www.jstor.org/stable/2691504">A Fibonacci-Like sequence of composite numbers</a>, Math. Mag. 63 (1) (1990) 21-25 %H A083103 Carlos Rivera, <a href="http://www.primepuzzles.net/problems/prob_031.htm">Problem 31. Fibonacci- all composites sequence</a>, The Prime Puzzles and Problems Connection. %H A083103 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,1). %F A083103 G.f.: (1786772701928802632268715130455793-727089476874887521210549988768798*x)/(1-x-x^2). [_Colin Barker_, Jun 19 2012] %t A083103 LinearRecurrence[{1,1},{1786772701928802632268715130455793, 1059683225053915111058165141686995},70] (* _Harvey P. Dale_, Oct 17 2011 *) %Y A083103 Cf. A000032 (Lucas numbers), A000045 (Fibonacci numbers), A083104, A083105. %K A083103 nonn,easy %O A083103 0,1 %A A083103 _Harry J. Smith_, Apr 22 2003 %E A083103 Name clarified by _Robert C. Lyons_, Feb 07 2025