This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083104 #44 Feb 07 2025 22:47:48 %S A083104 331635635998274737472200656430763,1510028911088401971189590305498785, %T A083104 1841664547086676708661790961929548, %U A083104 3351693458175078679851381267428333,5193358005261755388513172229357881,8545051463436834068364553496786214 %N A083104 Second-order linear recurrence sequence with a(n) = a(n-1) + a(n-2), with initial terms 331635635998274737472200656430763, 1510028911088401971189590305498785. %C A083104 This is a second-order linear recurrence sequence with a(0) and a(1) coprime that does not contain any primes. It was found by Ronald Graham in 1964. %H A083104 Indranil Ghosh, <a href="/A083104/b083104.txt">Table of n, a(n) for n = 0..4618</a> %H A083104 Arturas Dubickas, Aivaras Novikas and Jonas Šiurys, <a href="http://dx.doi.org/10.1016/j.jnt.2010.03.015">A binary linear recurrence sequence of composite numbers</a>, Journal of Number Theory, Volume 130, Issue 8, August 2010, Pages 1737-1749. %H A083104 R. L. Graham, <a href="http://www.jstor.org/stable/2689243">A Fibonacci-Like sequence of composite numbers</a>, Math. Mag. 37 (1964) 322-324. %H A083104 D. Ismailescu and J. Son, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Ismailescu/ism8.html">A New Kind of Fibonacci-Like Sequence of Composite Numbers</a>, J. Int. Seq. 17 (2014) # 14.8.2. %H A083104 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A083104 D. E. Knuth, <a href="http://www.jstor.org/stable/2691504">A Fibonacci-Like sequence of composite numbers</a>, Math. Mag. 63 (1) (1990) 21-25 %H A083104 J. W. Nicol, <a href="https://doi.org/10.37236/1476">A Fibonacci-like sequence of composite numbers</a>, The Electronic Journal of Combinatorics, Volume 6 (1999), Research Paper #R44. %H A083104 Carlos Rivera, <a href="http://www.primepuzzles.net/problems/prob_031.htm">Problem 31. Fibonacci- all composites sequence</a>, The Prime Puzzles and Problems Connection. %H A083104 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,1). %F A083104 G.f.: (331635635998274737472200656430763+1178393275090127233717389649068022*x)/(1-x-x^2). - _Colin Barker_, Jun 19 2012 %t A083104 LinearRecurrence[{1,1},{331635635998274737472200656430763,1510028911088401971189590305498785},7] (* _Harvey P. Dale_, Oct 29 2016 *) %o A083104 (PARI) a(n)=331635635998274737472200656430763*fibonacci(n-1)+ 1510028911088401971189590305498785*fibonacci(n) \\ _Charles R Greathouse IV_, Dec 18 2014 %Y A083104 Cf. A000032 (Lucas numbers), A000045 (Fibonacci numbers), A083103, A083105, A083216, A082411, A221286. %K A083104 nonn,easy %O A083104 0,1 %A A083104 _Harry J. Smith_, Apr 23 2003 %E A083104 Name clarified by _Robert C. Lyons_, Feb 07 2025