This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083116 #17 Jan 23 2024 17:12:08 %S A083116 1,2,3,4,5,6,7,8,9,0,11,444,111111,222222,555,0,1111111111111111,666, %T A083116 111111111111111111,0,777,22,1111111111111111111111,888,0,222222,999, %U A083116 444444,1111111111111111111111111111,0,111111111111111,0,33,2222222222222222,555555 %N A083116 Smallest multiple of n using a single digit with multiplicity, or 0 if no such number exists. %C A083116 1. If p is a prime > 5 then there exists a d such that a(p) = concatenation of '1' d times where p = k*d + 1 for some k. a(p)= (10^d -1)/9 < ={10^(p-1)- 1}/9. %C A083116 2. a(n) = 0 if n = 10k, 16k or 25k. %D A083116 Amarnath Murthy, "On the divisors of the Smarandache Unary sequence," Smarandache Notions Journal, Volume 11, 1-2-3, Spring 2000. %H A083116 Bo Gyu Jeong, <a href="/A083116/b083116.txt">Table of n, a(n) for n = 1..1000</a> %H A083116 Bo Gyu Jeong, <a href="/A083116/a083116.cpp.txt">C++ code which computes A083117 and this sequence</a> %o A083116 (Python) %o A083116 from itertools import count %o A083116 def A083116(n): %o A083116 if not (n%10 and n%16 and n%25): return 0 %o A083116 for l in count(1): %o A083116 k = (10**l-1)//9 %o A083116 for a in range(1,10): %o A083116 if not (m:=a*k)%n: %o A083116 return m # _Chai Wah Wu_, Jan 23 2024 %Y A083116 Cf. A083117, A083118. %K A083116 base,nonn %O A083116 1,2 %A A083116 _Amarnath Murthy_ and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Apr 23 2003 %E A083116 a(21) corrected by _Bo Gyu Jeong_, Jun 12 2012 %E A083116 More terms from _Bo Gyu Jeong_, Jun 13 2012