cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083140 Sieve of Eratosthenes arranged as an array and read by antidiagonals in the up direction; n-th row has property that smallest prime factor is prime(n).

This page as a plain text file.
%I A083140 #156 Dec 18 2019 08:57:57
%S A083140 2,3,4,5,9,6,7,25,15,8,11,49,35,21,10,13,121,77,55,27,12,17,169,143,
%T A083140 91,65,33,14,19,289,221,187,119,85,39,16,23,361,323,247,209,133,95,45,
%U A083140 18,29,529,437,391,299,253,161,115,51,20,31,841,667,551,493,377,319,203,125,57,22
%N A083140 Sieve of Eratosthenes arranged as an array and read by antidiagonals in the up direction; n-th row has property that smallest prime factor is prime(n).
%C A083140 A permutation of natural numbers >= 2.
%C A083140 The proportion of integers in the n-th row of the array is given by A005867(n-1)/A002110(n) = A038110(n)/A038111(n). - _Peter Kagey_, Jun 03 2019, based on comments by _Jamie Morken_ and discussion with _Tom Hanlon_.
%C A083140 The proportion of the integers after the n-th row of the array is given by A005867(n)/A002110(n). - _Tom Hanlon_, Jun 08 2019
%H A083140 Ivan Neretin, <a href="/A083140/b083140.txt">Table of n, a(n) for n = 2..5051</a>
%H A083140 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%H A083140 <a href="/index/Si#sieve">Index entries for sequences generated by sieves</a>
%e A083140 Array begins:
%e A083140    2   4   6   8  10  12  14  16  18  20  22  24 .... (A005843 \ {0})
%e A083140    3   9  15  21  27  33  39  45  51  57  63  69 .... (A016945)
%e A083140    5  25  35  55  65  85  95 115 125 145 155 175 .... (A084967)
%e A083140    7  49  77  91 119 133 161 203 217 259 287 301 .... (A084968)
%e A083140   11 121 143 187 209 253 319 341 407 451 473 517 .... (A084969)
%e A083140   13 169 221 247 299 377 403 481 533 559 611 689 .... (A084970)
%t A083140 a = Join[ {Table[2n, {n, 1, 12}]}, Table[ Take[ Prime[n]*Select[ Range[100], GCD[ Prime[n] #, Product[ Prime[i], {i, 1, n - 1}]] == 1 &], 12], {n, 2, 12}]]; Flatten[ Table[ a[[i, n - i]], {n, 2, 12}, {i, n - 1, 1, -1}]]
%t A083140 (* second program: *)
%t A083140 rows = 12; Clear[T]; Do[For[m = p = Prime[n]; k = 1, k <= rows, m += p, If[ FactorInteger[m][[1, 1]] == p, T[n, k++] = m]], {n, rows}]; Table[T[n - k + 1, k], {n, rows}, {k, n}] // Flatten (* _Jean-François Alcover_, Mar 08 2016 *)
%Y A083140 Cf. A083141 (main diagonal), A083221 (transpose), A004280, A038179, A084967, A084968, A084969, A084970, A084971.
%Y A083140 Arrays of integers grouped into rows by various criteria:
%Y A083140 by greatest prime factor: A125624,
%Y A083140 by lowest prime factor: this sequence (upward antidiagonals), A083221 (downward antidiagonals),
%Y A083140 by number of distinct prime factors: A125666,
%Y A083140 by number of prime factors counted with multiplicity: A078840,
%Y A083140 by prime signature: A095904,
%Y A083140 by ordered prime signature: A096153,
%Y A083140 by number of divisors: A119586,
%Y A083140 by number of 1's in binary expansion: A066884 (upward), A067576 (downward),
%Y A083140 by distance to next prime: A192179.
%Y A083140 Cf. A002110, A005867, A038110, A038111.
%K A083140 nonn,tabl,nice
%O A083140 2,1
%A A083140 _Yasutoshi Kohmoto_, Jun 05 2003
%E A083140 More terms from _Hugo Pfoertner_ and _Robert G. Wilson v_, Jun 13 2003