This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083207 #223 Dec 25 2024 11:03:31 %S A083207 6,12,20,24,28,30,40,42,48,54,56,60,66,70,78,80,84,88,90,96,102,104, %T A083207 108,112,114,120,126,132,138,140,150,156,160,168,174,176,180,186,192, %U A083207 198,204,208,210,216,220,222,224,228,234,240,246,252,258,260,264,270,272 %N A083207 Zumkeller or integer-perfect numbers: numbers n whose divisors can be partitioned into two disjoint sets with equal sum. %C A083207 The 229026 Zumkeller numbers less than 10^6 have a maximum difference of 12. This leads to the conjecture that any 12 consecutive numbers include at least one Zumkeller number. There are 1989 odd Zumkeller numbers less than 10^6; they are exactly the odd abundant numbers that have even abundance, A174865. - _T. D. Noe_, Mar 31 2010 %C A083207 For k >= 0, numbers of the form 18k + 6 and 18k + 12 are terms (see Remark 2.3. in Somu et al., 2023). Corollary: The maximum difference between any two consecutive terms is at most 12. - _Ivan N. Ianakiev_, Jan 02 2024 %C A083207 All 205283 odd abundant numbers less than 10^8 that have even abundance (see A174865) are Zumkeller numbers. - _T. D. Noe_, Nov 14 2010 %C A083207 Except for 1 and 2, all primorials (A002110) are Zumkeller numbers (follows from Fact 6 in the Rao/Peng paper). - _Ivan N. Ianakiev_, Mar 23 2016 %C A083207 Supersequence of A111592 (follows from Fact 3 in the Rao/Peng paper). - _Ivan N. Ianakiev_, Mar 20 2017 %C A083207 Conjecture: Any 4 consecutive terms include at least one number k such that sigma(k)/2 is also a Zumkeller number (verified for the first 10^5 Zumkeller numbers). - _Ivan N. Ianakiev_, Apr 03 2017 %C A083207 LeVan studied these numbers using the equivalent definition of numbers n such that n = Sum_{d|n, d<n} alpha(d)*d, where alpha(d) is either 1 or -1, and named them "integer-perfect numbers". She also named the primitive Zumkeller numbers (A180332) "minimal integer-perfect numbers". - _Amiram Eldar_, Dec 20 2018 %C A083207 The numbers 3 * 2^k for k > 0 are all Zumkeller numbers: half of one such partition is {3*2^k, 3*2^(k-2), ...}, replacing 3 with 2 if it appears. With this and the lemma that the product of a Zumkeller number and a number coprime to it is again a Zumkeller number (see A179527), we have that all numbers divisible by 6 but not 9 (or numbers congruent to 6 or 12 modulo 18) are Zumkeller numbers, proving that the difference between consecutive Zumkeller numbers is at most 12. - _Charlie Neder_, Jan 15 2019 %C A083207 Improvements on the previous comment: 1) For every integer q > 0, every odd integer r > 0 and every integer s > 0 relatively prime to 6, the integer 2^q*3^r*s is a Zumkeller number, and therefore 2) there exist Zumkeller numbers divisible by 9 (such as 54, 90, 108, 126, etc.). - _Ivan N. Ianakiev_, Jan 16 2020 %C A083207 Conjecture: If d > 1, d|k and tau(d)*sigma(d) = k, then k is a Zumkeller number (cf. A331668). - _Ivan N. Ianakiev_, Apr 24 2020 %C A083207 This sequence contains A378541, the intersection of the practical numbers (A005153) with numbers with even sum of divisors (A028983). - _David A. Corneth_, Nov 03 2024 %C A083207 Sequence gives the positions of even terms in A119347, and correspondingly, of odd terms in A308605. - _Antti Karttunen_, Nov 29 2024 %C A083207 If s = sigma(m) is odd and p > s then m*p is not in the sequence. - _David A. Corneth_, Dec 07 2024 %D A083207 Marijo O. LeVan, Integer-perfect numbers, Journal of Natural Sciences and Mathematics, Vol. 27, No. 2 (1987), pp. 33-50. %D A083207 Marijo O. LeVan, On the order of nu(n), Journal of Natural Sciences and Mathematics, Vol. 28, No. 1 (1988), pp. 165-173. %D A083207 J. Sandor and B. Crstici, Handbook of Number Theory, II, Springer Verlag, 2004, chapter 1.10, pp. 53-54. %H A083207 T. D. Noe, <a href="/A083207/b083207.txt">Table of n, a(n) for n = 1..10000</a> %H A083207 M. Basher, <a href="https://doi.org/10.1186/s42787-021-00121-y">k-Zumkeller labeling of super subdivision of some graphs</a>, J. Egyptian Math. Soc. (2021) Vol. 29, No. 12. %H A083207 Hussein Behzadipour, <a href="https://arxiv.org/abs/1812.07233">Two-layered numbers</a>, arXiv:1812.07233 [math.NT], 2018. %H A083207 K. P. S. Bhaskara Rao and Yuejian Peng, <a href="http://arxiv.org/abs/0912.0052">On Zumkeller Numbers</a>, arXiv:0912.0052 [math.NT], 2009. %H A083207 K. P. S. Bhaskara Rao and Yuejian Peng, <a href="https://doi.org/10.1016/j.jnt.2012.09.020">On Zumkeller Numbers</a>, Journal of Number Theory, Volume 133, Issue 4, April 2013, pp. 1135-1155. %H A083207 David A. Corneth, <a href="/A083207/a083207_2.gp.txt">PARI programs</a> (Use function "is" for A179527) %H A083207 Bhabesh Das, <a href="https://doi.org/10.7546/nntdm.2024.30.2.436-442">On unitary Zumkeller numbers</a>, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 2, 436-442. %H A083207 Farid Jokar, <a href="https://arxiv.org/abs/1902.02168">On the difference between Zumkeller numbers</a>, arXiv:1902.02168 [math.NT], 2019. %H A083207 Farid Jokar, <a href="https://arxiv.org/abs/2003.11309">On k-layered numbers and some labeling related to k-layered numbers</a>, arXiv:2003.11309 [math.NT], 2020. %H A083207 Farid Jokar, <a href="https://arxiv.org/abs/2207.09053">On k-layered numbers</a>, arXiv:2207.09053 [math.NT], 2022. %H A083207 Peter Luschny, <a href="http://www.luschny.de/math/seq/ZumkellerNumbers.html">Zumkeller Numbers</a>. %H A083207 Pankaj Jyoti Mahanta, Manjil P. Saikia, and Daniel Yaqubi, <a href="https://arxiv.org/abs/2008.11096">Some properties of Zumkeller numbers and k-layered numbers</a>, arXiv:2008.11096 [math.NT], 2020. %H A083207 Pankaj Jyoti Mahanta, Manjil P. Saikia, and Daniel Yaqubi, <a href="https://doi.org/10.1016/j.jnt.2020.05.003">Some properties of Zumkeller numbers and k-layered numbers</a>, Journal of Number Theory (2020). %H A083207 Sai Teja Somu, Andrzej Kukla, and Duc Van Khanh Tran, <a href="https://arxiv.org/abs/2310.14149">Some Results on Zumkeller Numbers</a>, arXiv:2310.14149 [math.NT], 2023. %H A083207 Reinhard Zumkeller, <a href="/A083206/a083206.txt">Illustration of initial terms</a> %H A083207 <a href="/index/O#opnseqs">Index entries for sequences where any odd perfect numbers must occur</a> %F A083207 A083206(a(n)) > 0. %F A083207 A083208(n) = A083206(a(n)). %F A083207 A179529(a(n)) = 1. - _Reinhard Zumkeller_, Jul 19 2010 %e A083207 Given n = 48, we can partition the divisors thus: 1 + 3 + 4 + 6 + 8 + 16 + 24 = 2 + 12 + 48, therefore 48 is a term (A083206(48) = 5). %e A083207 From _David A. Corneth_, Dec 04 2024: (Start) %e A083207 30 is in the sequence. sigma(30) = 72. So we look for distinct divisors of 30 that sum to 72/2 = 36. That set or its complement contains 30. The other divisors in that set containing 30 sum to 36 - 30 = 6. So we look for some distinct proper divisors of 30 that sum to 6. That is from the divisors of {1, 2, 3, 5, 6, 10, 15}. It turns out that both 1+2+3 and 6 satisfy this condition. So 36 is in the sequence. %e A083207 25 is not in the sequence as sigma(25) = 31 which is odd so the sum of two equal integers cannot be the sum of divisors of 25. %e A083207 33 is not in the sequence as sigma(33) = 48 < 2*33. So is impossible to have a partition of the set of divisors into two disjoint set the sum of each of them sums to 48/2 = 24 as one of them contains 33 > 24 and any other divisors are nonnegative. (End) %p A083207 with(numtheory): with(combstruct): %p A083207 is_A083207 := proc(n) local S, R, Found, Comb, a, s; s := sigma(n); %p A083207 if not(modp(s, 2) = 0 and n * 2 <= s) then return false fi; %p A083207 S := s / 2 - n; R := select(m -> m <= S, divisors(n)); Found := false; %p A083207 Comb := iterstructs(Combination(R)): %p A083207 while not finished(Comb) and not Found do %p A083207 Found := add(a, a = nextstruct(Comb)) = S %p A083207 od; Found end: %p A083207 A083207_list := upto -> select(is_A083207, [$1..upto]): %p A083207 A083207_list(272); # _Peter Luschny_, Dec 14 2009, updated Aug 15 2014 %t A083207 ZumkellerQ[n_] := Module[{d=Divisors[n], t, ds, x}, ds = Plus@@d; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]]; Select[Range[1000], ZumkellerQ] (* _T. D. Noe_, Mar 31 2010 *) %t A083207 znQ[n_]:=Length[Select[{#,Complement[Divisors[n],#]}&/@Most[Rest[ Subsets[ Divisors[ n]]]],Total[#[[1]]]==Total[#[[2]]]&]]>0; Select[Range[300],znQ] (* _Harvey P. Dale_, Dec 26 2022 *) %o A083207 (Haskell) %o A083207 a083207 n = a083207_list !! (n-1) %o A083207 a083207_list = filter (z 0 0 . a027750_row) $ [1..] where %o A083207 z u v [] = u == v %o A083207 z u v (p:ps) = z (u + p) v ps || z u (v + p) ps %o A083207 -- _Reinhard Zumkeller_, Apr 18 2013 %o A083207 (PARI) part(n,v)=if(n<1, return(n==0)); forstep(i=#v,2,-1,if(part(n-v[i],v[1..i-1]), return(1))); n==v[1] %o A083207 is(n)=my(d=divisors(n),s=sum(i=1,#d,d[i])); s%2==0 && part(s/2-n,d[1..#d-1]) \\ _Charles R Greathouse IV_, Mar 09 2014 %o A083207 (Python) %o A083207 from sympy import divisors %o A083207 from sympy.combinatorics.subsets import Subset %o A083207 for n in range(1,10**3): %o A083207 d = divisors(n) %o A083207 s = sum(d) %o A083207 if not s % 2 and max(d) <= s/2: %o A083207 for x in range(1,2**len(d)): %o A083207 if sum(Subset.unrank_binary(x,d).subset) == s/2: %o A083207 print(n,end=', ') %o A083207 break %o A083207 # _Chai Wah Wu_, Aug 13 2014 %o A083207 (PARI) \\ See Corneth link %o A083207 (Python) %o A083207 from sympy import divisors %o A083207 import numpy as np %o A083207 A083207 = [] %o A083207 for n in range(2,10**3): %o A083207 d = divisors(n) %o A083207 s = sum(d) %o A083207 if not s % 2 and 2*n <= s: %o A083207 d.remove(n) %o A083207 s2, ld = int(s/2-n), len(d) %o A083207 z = np.zeros((ld+1,s2+1),dtype=int) %o A083207 for i in range(1,ld+1): %o A083207 y = min(d[i-1],s2+1) %o A083207 z[i,range(y)] = z[i-1,range(y)] %o A083207 z[i,range(y,s2+1)] = np.maximum(z[i-1,range(y,s2+1)],z[i-1,range(0,s2+1-y)]+y) %o A083207 if z[i,s2] == s2: %o A083207 A083207.append(n) %o A083207 break %o A083207 # _Chai Wah Wu_, Aug 19 2014 %o A083207 (Sage) %o A083207 def is_Zumkeller(n): %o A083207 s = sigma(n) %o A083207 if not (2.divides(s) and n*2 <= s): return False %o A083207 S = s // 2 - n %o A083207 R = (m for m in divisors(n) if m <= S) %o A083207 return any(sum(c) == S for c in Combinations(R)) %o A083207 A083207_list = lambda lim: [n for n in (1..lim) if is_Zumkeller(n)] %o A083207 print(A083207_list(272)) # _Peter Luschny_, Sep 03 2018 %Y A083207 Positions of nonzero terms in A083206, positions of 0's in A103977 and in A378600. %Y A083207 Positions of even terms in A119347, of odd terms in A308605. %Y A083207 Complement of A083210. %Y A083207 Subsequence of A023196 and of A028983. %Y A083207 Union of A353061 and A378541. %Y A083207 Subsequences: A000396, A083209, A118372, A180332, A293453, A334410, A378652, A378599. %Y A083207 Conjectured subsequences: A007691, A331668 (after their initial 1's), A351548 (apart from 0-terms). %Y A083207 Cf. A174865 (Odd abundant numbers whose abundance is even). %Y A083207 Cf. A204830, A204831 (equal sums of 3 or 4 disjoint subsets). %Y A083207 Cf. A000203, A005101, A005153 (practical numbers), A005835, A027750, A048055, A083206, A083208, A083211, A171641, A175592, A179527 (characteristic function), A221054. %K A083207 nonn,nice %O A083207 1,1 %A A083207 _Reinhard Zumkeller_, Apr 22 2003 %E A083207 Name improved by _T. D. Noe_, Mar 31 2010 %E A083207 Name "Zumkeller numbers" added by _N. J. A. Sloane_, Jul 08 2010