cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083209 Numbers whose divisors can be partitioned in exactly one way into two disjoint sets with the same sum.

This page as a plain text file.
%I A083209 #41 Feb 16 2025 08:32:49
%S A083209 6,12,20,28,56,70,88,104,176,208,272,304,368,464,496,550,650,736,836,
%T A083209 928,992,1184,1312,1376,1504,1696,1888,1952,2752,3008,3230,3392,3770,
%U A083209 3776,3904,4030,4288,4510,4544,4672,5056,5170,5312,5696,5830,6208,6464
%N A083209 Numbers whose divisors can be partitioned in exactly one way into two disjoint sets with the same sum.
%C A083209 A083206(a(n))=1; perfect numbers (A000396) are a subset; problem: are weird numbers (A006037) a subset?
%C A083209 The weird numbers A006037 are not a subset of this sequence. The first missing weird number is A006037(8) = 10430. - _Alois P. Heinz_, Oct 29 2009
%C A083209 All numbers of the form p*2^k are in this sequence for k>0 and odd primes p between 2^(k+1)/3 and 2^(k+1). - _T. D. Noe_, Jul 08 2010
%C A083209 "Numbers with exactly one subset of their sets of divisors such that the complement has the same sum." - This was the original name of the sequence, but strictly taken is incorrect, because there are always two subsets that satisfy this condition: the subset and its complement. - _Antti Karttunen_, Dec 02 2024
%H A083209 T. D. Noe, <a href="/A083209/b083209.txt">Table of n, a(n) for n=1..407</a> (terms < 10^6)
%H A083209 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PerfectNumber.html">Perfect Number.</a>
%H A083209 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WeirdNumber.html">Weird Number.</a>
%H A083209 Reinhard Zumkeller, <a href="/A083206/a083206.txt">Illustration of initial terms</a>
%H A083209 <a href="/index/O#opnseqs">Index entries for sequences where odd perfect numbers must occur, if they exist at all</a>
%e A083209 n=20: 2+4+5+10 = 1+20, 20 is a term (A083206(20)=1).
%p A083209 with(numtheory): b:= proc(n,l) option remember; local m, ll, i; m:= nops(l); if n<0 then 0 elif n=0 then 1 elif m=0 or add(i, i=l)<n then 0 else ll:= subsop(m=NULL, l); b(n, ll) +b(n-l[m], ll) fi end: a:= proc(n) option remember; local i, k, l, m, r; for k from `if`(n=1, 1, a(n-1)+1) do l:= sort([divisors(k)[]]); m:= iquo(add(i, i=l), 2, 'r'); if r=0 and b(m, l)=2 then break fi od; k end: seq(a(n), n=1..30); # _Alois P. Heinz_, Oct 29 2009
%t A083209 b[n_, l_] := b[n, l] = Module[{m, ll, i}, m = Length[l]; Which[n<0, 0, n == 0, 1, m == 0 || Total[l]<n, 0, True, ll = ReplacePart[l, m -> Nothing]; b[n, ll] + b[n - l[[m]], ll]]]; a[n_] := a[n] = Module[{i, k, l, m, r}, For[k = If[n == 1, 1, a[n-1]+1], True, k++, l = Divisors[k]; {m, r} = QuotientRemainder[Total[l], 2]; If[r==0 && b[m, l]==2, Break[]]]; k]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 50}] (* _Jean-François Alcover_, Jan 31 2017, after _Alois P. Heinz_ *)
%o A083209 (PARI) isA083209 = A378449; \\ _Antti Karttunen_, Nov 28 2024
%Y A083209 Subsequence of A083207, Zumkeller numbers.
%Y A083209 Positions of 1's in A083206.
%Y A083209 Cf. A005101, A005835, A064771, A337739 (terms with record number of divisors), A378449 (characteristic function), A378530 (subsequence).
%Y A083209 Cf. also A378652, and A335143, A335199, A335202, A335219, A335217, A339980 for variants.
%K A083209 nonn
%O A083209 1,1
%A A083209 _Reinhard Zumkeller_, Apr 22 2003
%E A083209 More terms from _Alois P. Heinz_, Oct 29 2009
%E A083209 Improved the definition, old name moved to the comments - _Antti Karttunen_, Dec 02 2024