This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083210 #29 Dec 02 2024 21:19:09 %S A083210 1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,18,19,21,22,23,25,26,27,29,31, %T A083210 32,33,34,35,36,37,38,39,41,43,44,45,46,47,49,50,51,52,53,55,57,58,59, %U A083210 61,62,63,64,65,67,68,69,71,72,73,74,75,76,77,79,81,82,83,85,86,87,89,91 %N A083210 Numbers with no subset of their divisors such that the complement has the same sum. %C A083210 A083206(a(n)) = 0; complement of A083207; deficient numbers (A005100) are a subset. %C A083210 A179529(a(n)) = 0. [_Reinhard Zumkeller_, Jul 19 2010] %H A083210 Antti Karttunen, <a href="/A083210/b083210.txt">Table of n, a(n) for n = 1..20000</a> %H A083210 Reinhard Zumkeller, <a href="/A083206/a083206.txt">Illustration of initial terms</a> %o A083210 (Python) %o A083210 from itertools import count, islice %o A083210 from sympy import divisors %o A083210 def A083210_gen(startvalue=1): # generator of terms >= startvalue %o A083210 for n in count(max(startvalue,1)): %o A083210 d = divisors(n) %o A083210 s = sum(d) %o A083210 if s&1^1 and n<<1<=s: %o A083210 d = d[:-1] %o A083210 s2, ld = (s>>1)-n, len(d) %o A083210 z = [[0 for _ in range(s2+1)] for _ in range(ld+1)] %o A083210 for i in range(1, ld+1): %o A083210 y = min(d[i-1], s2+1) %o A083210 z[i][:y] = z[i-1][:y] %o A083210 for j in range(y,s2+1): %o A083210 z[i][j] = max(z[i-1][j],z[i-1][j-y]+y) %o A083210 if z[i][s2] == s2: %o A083210 break %o A083210 else: %o A083210 yield n %o A083210 else: %o A083210 yield n %o A083210 A083210_list = list(islice(A083210_gen(),30)) # _Chai Wah Wu_, Feb 13 2023 %o A083210 (PARI) is_A083210(n) = !A083206(n); \\ _Antti Karttunen_, Dec 02 2024 %Y A083210 Positions of 0's in A083206. %Y A083210 Cf. A083207 (complement). %Y A083210 Cf. A005100, A083211 (subsequences). %K A083210 nonn %O A083210 1,2 %A A083210 _Reinhard Zumkeller_, Apr 22 2003