cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083210 Numbers with no subset of their divisors such that the complement has the same sum.

This page as a plain text file.
%I A083210 #29 Dec 02 2024 21:19:09
%S A083210 1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,18,19,21,22,23,25,26,27,29,31,
%T A083210 32,33,34,35,36,37,38,39,41,43,44,45,46,47,49,50,51,52,53,55,57,58,59,
%U A083210 61,62,63,64,65,67,68,69,71,72,73,74,75,76,77,79,81,82,83,85,86,87,89,91
%N A083210 Numbers with no subset of their divisors such that the complement has the same sum.
%C A083210 A083206(a(n)) = 0; complement of A083207; deficient numbers (A005100) are a subset.
%C A083210 A179529(a(n)) = 0. [_Reinhard Zumkeller_, Jul 19 2010]
%H A083210 Antti Karttunen, <a href="/A083210/b083210.txt">Table of n, a(n) for n = 1..20000</a>
%H A083210 Reinhard Zumkeller, <a href="/A083206/a083206.txt">Illustration of initial terms</a>
%o A083210 (Python)
%o A083210 from itertools import count, islice
%o A083210 from sympy import divisors
%o A083210 def A083210_gen(startvalue=1): # generator of terms >= startvalue
%o A083210     for n in count(max(startvalue,1)):
%o A083210         d = divisors(n)
%o A083210         s = sum(d)
%o A083210         if s&1^1 and n<<1<=s:
%o A083210             d = d[:-1]
%o A083210             s2, ld = (s>>1)-n, len(d)
%o A083210             z = [[0 for _ in range(s2+1)] for _ in range(ld+1)]
%o A083210             for i in range(1, ld+1):
%o A083210                 y = min(d[i-1], s2+1)
%o A083210                 z[i][:y] = z[i-1][:y]
%o A083210                 for j in range(y,s2+1):
%o A083210                     z[i][j] = max(z[i-1][j],z[i-1][j-y]+y)
%o A083210                 if z[i][s2] == s2:
%o A083210                     break
%o A083210             else:
%o A083210                 yield n
%o A083210         else:
%o A083210             yield n
%o A083210 A083210_list = list(islice(A083210_gen(),30)) # _Chai Wah Wu_, Feb 13 2023
%o A083210 (PARI) is_A083210(n) = !A083206(n); \\ _Antti Karttunen_, Dec 02 2024
%Y A083210 Positions of 0's in A083206.
%Y A083210 Cf. A083207 (complement).
%Y A083210 Cf. A005100, A083211 (subsequences).
%K A083210 nonn
%O A083210 1,2
%A A083210 _Reinhard Zumkeller_, Apr 22 2003