cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083221 Sieve of Eratosthenes arranged as an array and read by antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

This page as a plain text file.
%I A083221 #42 Apr 19 2016 01:23:08
%S A083221 2,4,3,6,9,5,8,15,25,7,10,21,35,49,11,12,27,55,77,121,13,14,33,65,91,
%T A083221 143,169,17,16,39,85,119,187,221,289,19,18,45,95,133,209,247,323,361,
%U A083221 23,20,51,115,161,253,299,391,437,529,29,22,57,125,203,319,377,493,551,667
%N A083221 Sieve of Eratosthenes arranged as an array and read by antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...
%C A083221 This is permutation of natural numbers larger than 1.
%C A083221 From _Antti Karttunen_, Dec 19 2014: (Start)
%C A083221 If we assume here that a(1) = 1 (but which is not explicitly included because outside of the array), then A252460 gives an inverse permutation. See also A249741.
%C A083221 For navigating in this array:
%C A083221 A055396(n) gives the row number of row where n occurs, and A078898(n) gives its column number, both starting their indexing from 1.
%C A083221 A250469(n) gives the number immediately below n, and when n is an odd number >= 3, A250470(n) gives the number immediately above n. If n is a composite, A249744(n) gives the number immediately left of n.
%C A083221 First cube of each row, which is {the initial prime of the row}^3 and also the first number neither a prime or semiprime, occurs on row n at position A250474(n).
%C A083221 (End)
%C A083221 The n-th row contains the numbers whose least prime factor is the n-th prime: A020639(T(n,k)) = A000040(n). - _Franklin T. Adams-Watters_, Aug 07 2015
%H A083221 Antti Karttunen, <a href="/A083221/b083221.txt">Table of n, a(n) for n = 2..3487; the first 83 antidiagonals of the array, flattened</a>
%H A083221 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%e A083221 The top left corner of the array:
%e A083221    2,   4,   6,    8,   10,   12,   14,   16,   18,   20,   22,   24,   26
%e A083221    3,   9,  15,   21,   27,   33,   39,   45,   51,   57,   63,   69,   75
%e A083221    5,  25,  35,   55,   65,   85,   95,  115,  125,  145,  155,  175,  185
%e A083221    7,  49,  77,   91,  119,  133,  161,  203,  217,  259,  287,  301,  329
%e A083221   11, 121, 143,  187,  209,  253,  319,  341,  407,  451,  473,  517,  583
%e A083221   13, 169, 221,  247,  299,  377,  403,  481,  533,  559,  611,  689,  767
%e A083221   17, 289, 323,  391,  493,  527,  629,  697,  731,  799,  901, 1003, 1037
%e A083221   19, 361, 437,  551,  589,  703,  779,  817,  893, 1007, 1121, 1159, 1273
%e A083221   23, 529, 667,  713,  851,  943,  989, 1081, 1219, 1357, 1403, 1541, 1633
%e A083221   29, 841, 899, 1073, 1189, 1247, 1363, 1537, 1711, 1769, 1943, 2059, 2117
%e A083221   ...
%t A083221 lim = 11; a = Table[Take[Prime[n] Select[Range[lim^2], GCD[# Prime@ n, Product[Prime@ i, {i, 1, n - 1}]] == 1 &], lim], {n, lim}]; Flatten[Table[a[[i, n - i + 1]], {n, lim}, {i, n}]] (* _Michael De Vlieger_, Jan 04 2016, after _Yasutoshi Kohmoto_ at A083140 *)
%o A083221 (Scheme, with _Antti Karttunen_'s IntSeq-library)
%o A083221 (define (A083221 n) (if (<= n 1) n (A083221bi (A002260 (- n 1)) (A004736 (- n 1))))) ;; Gives 1 for 1 and then the terms of this square array: (A083221 2) = 2, (A083221 3) = 4, etc.
%o A083221 (define (A083221bi row col) ((rowfun_n_for_A083221 row) col))
%o A083221 (definec (rowfun_n_for_A083221 n) (if (= 1 n) (lambda (n) (+ n n)) (let ((rowfun_of_Esieve (rowfun_n_for_Esieve n)) (prime (A000040 n))) (COMPOSE rowfun_of_Esieve (MATCHING-POS 1 1 (lambda (i) (zero? (modulo (rowfun_of_Esieve i) prime))))))))
%o A083221 (definec (A000040 n) ((rowfun_n_for_Esieve n) 1))
%o A083221 (definec (rowfun_n_for_Esieve n) (if (= 1 n) (lambda (n) (+ 1 n)) (let* ((prevrowfun (rowfun_n_for_Esieve (- n 1))) (prevprime (prevrowfun 1))) (COMPOSE prevrowfun (NONZERO-POS 1 1 (lambda (i) (modulo (prevrowfun i) prevprime)))))))
%o A083221 ;; _Antti Karttunen_, Dec 19 2014
%Y A083221 Transpose of A083140.
%Y A083221 One more than A249741.
%Y A083221 Inverse permutation: A252460.
%Y A083221 Column 1: A000040, Column 2: A001248.
%Y A083221 Row 1: A005843, Row 2: A016945, Row 3: A084967, Row 4: A084968, Row 5: A084969, Row 6: A084970.
%Y A083221 Main diagonal: A083141.
%Y A083221 First semiprime in each column occurs at A251717; A251718 & A251719 with additional criteria. A251724 gives the corresponding semiprimes for the latter. See also A251728.
%Y A083221 Permutations based on mapping numbers between this array and A246278: A249817, A249818, A250244, A250245, A250247, A250249. See also: A249811, A249814, A249815.
%Y A083221 Also used in the definition of the following arrays of permutations: A249821, A251721, A251722.
%Y A083221 Cf. A002260, A004736, A004280, A020639, A038179, A055396, A078898, A138511, A249820, A249730, A249735, A249744, A250469, A250470, A250472, A250474.
%K A083221 nonn,tabl,look
%O A083221 2,1
%A A083221 _Yasutoshi Kohmoto_, Jun 05 2003
%E A083221 More terms from _Hugo Pfoertner_, Jun 13 2003