This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083239 #26 Aug 04 2024 20:36:18 %S A083239 1,0,1,1,1,3,-1,7,-3,9,-5,15,-11,23,-17,25,-17,33,-27,45,-37,49,-39, %T A083239 61,-53,73,-61,79,-67,95,-87,117,-101,121,-105,129,-117,153,-135,159, %U A083239 -143,183,-171,213,-193,217,-195,241,-225,267,-247,279,-255,307,-289,329,-305,341,-313,371,-355,415,-385,421,-389,437,-417 %N A083239 First order recursion: a(0) = 1; a(n) = phi(n) - a(n-1) = A000010(n) - a(n-1). %C A083239 Provides interesting decomposition: phi(n) = u+w, where u and w consecutive terms of this sequence. Depends also on initial value. %H A083239 Amiram Eldar, <a href="/A083239/b083239.txt">Table of n, a(n) for n = 0..10000</a> %F A083239 a(n) + a(n-1) = A000010(n). %F A083239 a(n) = (-1)^n * (1 - A068773(n)) for n >= 1. - _Amiram Eldar_, Mar 05 2024 %p A083239 A083239 := proc(n) %p A083239 option remember ; %p A083239 if n = 0 then %p A083239 1 ; %p A083239 else %p A083239 numtheory[phi](n)-procname(n-1) ; %p A083239 end if; %p A083239 end proc: %p A083239 seq(A083239(n),n=0..100) ; # _R. J. Mathar_, Jun 20 2021 %t A083239 a[n_] := a[n] = EulerPhi[n] -a[n-1]; a[0] = 1; Table[a[n], {n, 0, 100}] %o A083239 (Python) %o A083239 # uses programs from A002088 and A049690 %o A083239 def A083239(n): return A002088(n)-(A049690(n>>1)<<1)-1 if n&1 else 1+(A049690(n>>1)<<1)-A002088(n) # _Chai Wah Wu_, Aug 04 2024 %Y A083239 Cf. A000010, A068773, A083236, A083237, A083238. %K A083239 sign,easy %O A083239 0,6 %A A083239 _Labos Elemer_, Apr 23 2003 %E A083239 a(0)=1 prepended by _R. J. Mathar_, Jun 20 2021