cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083243 Numbers k for which there are more divisors and coprimes than other numbers less than k: A045763(k) < A073757(k) or A045763(k) < k/2 or A073757(k) > k/2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76
Offset: 1

Views

Author

Labos Elemer, May 07 2003

Keywords

Examples

			30 is not in the sequence because d(30) + phi(30) - 1 = 8 + 8 - 1 = 15. There are as many divisors and coprimes as there are numbers j <= 30 that neither divide nor are coprime to 30.
50 is not here because d(50) + phi(50) - 1 = 6 + 20 - 1 = 25. There are as many divisors and coprimes as there are numbers j < 50 that neither divide nor are coprime to 50.
146 is here because d(146) + phi(146) - 1 = 4 + 72 - 1 = 75; 146/2 = 73, and 75 > 73.
61455 is here because d(61455) + phi(61455) - 1 = 16 + 30720 - 1 = 30735; 61455/2 = 30727 + 1/2, and 30735 > 61455/2.
		

Crossrefs

Programs

  • Mathematica
    Do[r=EulerPhi[n]; d=DivisorSigma[0, n]; u=n-r-d+1; If[Greater[n-u, n/2], Print[n, {d, r, u}]], {n, 1, 100}]
    (* Second program: *)
    Select[Range[120], DivisorSigma[0, #] + EulerPhi[#] - 1 > #/2 &] (* Michael De Vlieger, Aug 22 2023 *)

Formula

{ k : d(k) + phi(k) - 1 > k/2 }.

Extensions

Data corrected and entry edited by Michael De Vlieger, Aug 22 2023