cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083248 Numbers k such that A045763(k) > A000010(k) > A000005(k).

This page as a plain text file.
%I A083248 #16 Feb 09 2025 02:48:55
%S A083248 36,40,42,48,50,54,56,60,66,70,72,78,80,84,88,90,96,98,100,102,104,
%T A083248 105,108,110,112,114,120,126,130,132,136,138,140,144,150,152,154,156,
%U A083248 160,162,168,170,174,176,180,182,184,186,190,192,196,198,200,204,208,210
%N A083248 Numbers k such that A045763(k) > A000010(k) > A000005(k).
%C A083248 Primes are not terms since A045763(p) = 0 < A000005(p) = 2 for a prime p.
%H A083248 Amiram Eldar, <a href="/A083248/b083248.txt">Table of n, a(n) for n = 1..10000</a>
%e A083248 k = 100 is a term since d(k) = 9, phi(k) = 40, unrelateds(k) = 100 - 9 - 40 + 1 = 52, and 52 > 40 > 9 holds.
%t A083248 Do[r=EulerPhi[n]; d=DivisorSigma[0, n]; u=n-r-d+1; If[Greater[u, r]&&Greater[r, d], Print[n, {d, r, u}]], {n, 1, 1000}]
%o A083248 (PARI) isok(k) = {my(f = factor(k), d = numdiv(f), r = eulerphi(f), u = k - r - d + 1); u > r && r > d;} \\ _Amiram Eldar_, Feb 08 2025
%Y A083248 Cf. A000005, A000010, A045763, A073757, A083243, A083244, A083245, A083246, A083247, A020488.
%K A083248 nonn
%O A083248 1,1
%A A083248 _Labos Elemer_, May 07 2003