cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083269 a(n) = pi(A052180(n)) = A000720(A052180(n)); subscript of last prime used in Eratosthenes sieve by which all composites between n-th and (n+1)th primes were excluded.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 3, 1, 3, 2, 1, 2, 4, 3, 1, 3, 2, 1, 4, 2, 3, 4, 2, 1, 2, 1, 2, 5, 2, 4, 1, 5, 1, 3, 4, 2, 6, 3, 1, 5, 1, 2, 1, 5, 6, 2, 1, 2, 3, 1, 6, 5, 4, 3, 1, 3, 2, 1, 7, 6, 2, 1, 2, 7, 3, 5, 1, 2, 3, 8, 4, 6, 2, 3, 7, 2, 6, 4, 1, 4, 1, 8, 2, 3, 5, 2, 1, 2, 5, 6, 2, 7, 2, 3, 5, 1, 9, 3, 8, 6, 3, 1, 3
Offset: 1

Views

Author

Labos Elemer, May 14 2003

Keywords

Examples

			Of composites between the 24th and 25th primes (89, 97), the least prime divisors are {2,7,2,3,2,5,2}.
The largest of these is 7. This means that pi(7)=4 steps in prime sieving are required to sweep out all composites between 89 and 97: {90,92,94,96}, {93}, {95}, and {91} were excluded in the 1st, 2nd, 3rd, and 4th steps, respectively.
So a(24)=4.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] mi[x_] := Min[ba[x]] Table[PrimePi[Max[Table[mi[ba[w]], {w, Prime[j]+1, -1+Prime[j+1]}]]], {j, 1, 30}]