cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083289 Least k such that 10^n+k is a brilliant number (cf. A078972).

Original entry on oeis.org

3, 0, 21, 3, 201, 13, 18081, 43, 140049, 81, 600009, 147, 6000009, 73, 380000361, 3, 1400000049, 831, 14000000049, 49, 380000000361, 987, 600000000009, 691, 78000000001521, 183, 740000000001369, 4153, 6200000000000961, 279
Offset: 0

Views

Author

Jason Earls, Jun 03 2003

Keywords

Comments

If n is an even positive exponent, then a(n) is the first prime greater than 10^(n/2) squared less 10^n.

Crossrefs

Programs

  • Mathematica
    NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; LengthBase10[n_] := Floor[ Log[10, n] + 1]; f[n_] := Block[{k = 0}, If[ EvenQ[n] && n > 1, NextPrim[ 10^(n/2)]^2 - 10^n, While[fi = FactorInteger[10^n + k]; Plus @@ Flatten[ Table[ # [[2]], {1}] & /@ fi] != 2 || Length[ Union[ LengthBase10 /@ Flatten[ Table[ # [[1]], {1}] & /@ fi]]] != 1, k++ ]; k]]; Table[ f[n], {n, 0, 30}]
  • Python
    from sympy import nextprime, factorint
    def A083289(n):
        a, b = divmod(n,2)
        c, d = 10**n, 10**a
        if b == 0: return nextprime(d)**2-c
        k = 0
        while True:
            fs = factorint(c+k,multiple=True)
            if len(fs) == 2 and min(fs) >= d:
                return k
            k += 1 # Chai Wah Wu, Sep 28 2021

Extensions

Edited and extended by Robert G. Wilson v, Jun 27 2003