A083289 Least k such that 10^n+k is a brilliant number (cf. A078972).
3, 0, 21, 3, 201, 13, 18081, 43, 140049, 81, 600009, 147, 6000009, 73, 380000361, 3, 1400000049, 831, 14000000049, 49, 380000000361, 987, 600000000009, 691, 78000000001521, 183, 740000000001369, 4153, 6200000000000961, 279
Offset: 0
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..42
- Dario Alejandro Alpern, Brilliant numbers
Programs
-
Mathematica
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; LengthBase10[n_] := Floor[ Log[10, n] + 1]; f[n_] := Block[{k = 0}, If[ EvenQ[n] && n > 1, NextPrim[ 10^(n/2)]^2 - 10^n, While[fi = FactorInteger[10^n + k]; Plus @@ Flatten[ Table[ # [[2]], {1}] & /@ fi] != 2 || Length[ Union[ LengthBase10 /@ Flatten[ Table[ # [[1]], {1}] & /@ fi]]] != 1, k++ ]; k]]; Table[ f[n], {n, 0, 30}]
-
Python
from sympy import nextprime, factorint def A083289(n): a, b = divmod(n,2) c, d = 10**n, 10**a if b == 0: return nextprime(d)**2-c k = 0 while True: fs = factorint(c+k,multiple=True) if len(fs) == 2 and min(fs) >= d: return k k += 1 # Chai Wah Wu, Sep 28 2021
Extensions
Edited and extended by Robert G. Wilson v, Jun 27 2003
Comments