This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083291 #12 May 23 2024 16:12:50 %S A083291 0,1,1,2,2,2,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,7, %T A083291 7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,0,1,2,3,4,5,6,7,8,9,10,1,2, %U A083291 3,4,5,6,7,8,9,10,11,12,2,3,4,5,6,7,8,9,10,11,12,13,14,3,4,5,6,7,8,9,10,11 %N A083291 Triangular array read by rows: T(n,k) = k*floor(n/10) + n mod 10, 0<=k<=n. %C A083291 A010879(n)=T(n,0); %C A083291 A076314(0)=T(0,0), A076314(n)=T(n,1) for n>0; %C A083291 A028897(n)=T(n,n) for n<=1, A028897(n)=T(n,2) for n>1; %C A083291 A028898(n)=T(n,n) for n<=2, A028898(n)=T(n,3) for n>2; %C A083291 A028899(n)=T(n,n) for n<=3, A028899(n)=T(n,4) for n>3; %C A083291 A028900(n)=T(n,n) for n<=4, A028900(n)=T(n,5) for n>4; %C A083291 A028901(n)=T(n,n) for n<=5, A028901(n)=T(n,6) for n>5; %C A083291 A028902(n)=T(n,n) for n<=6, A028902(n)=T(n,7) for n>6; %C A083291 A028903(n)=T(n,n) for n<=7, A028903(n)=T(n,8) for n>7; %C A083291 A028904(n)=T(n,n) for n<=8, A028904(n)=T(n,9) for n>8; %C A083291 T(n,n) = n for n<=9, T(n,10) = n for n>9; %C A083291 A083292(n) = T(n,n). %H A083291 Paolo Xausa, <a href="/A083291/b083291.txt">Table of n, a(n) for n = 0..11475</a> (rows 0..150 of the triangle, flattened). %e A083291 From _Paolo Xausa_, May 22 2024: (Start) %e A083291 Triangle begins: %e A083291 [0] 0; %e A083291 [1] 1, 1; %e A083291 [2] 2, 2, 2; %e A083291 [3] 3, 3, 3, 3; %e A083291 [4] 4, 4, 4, 4, 4; %e A083291 [5] 5, 5, 5, 5, 5, 5; %e A083291 [6] 6, 6, 6, 6, 6, 6, 6; %e A083291 [7] 7, 7, 7, 7, 7, 7, 7, 7; %e A083291 [8] 8, 8, 8, 8, 8, 8, 8, 8, 8; %e A083291 [9] 9, 9, 9, 9, 9, 9, 9, 9, 9, 9; %e A083291 [10] 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10; %e A083291 ... (End) %t A083291 Table[k*Floor[n/10] + Mod[n, 10], {n, 0, 10}, {k, 0, n}]//Flatten (* _Paolo Xausa_, May 22 2024 *) %K A083291 nonn,tabl %O A083291 0,4 %A A083291 _Reinhard Zumkeller_, Apr 23 2003 %E A083291 Offset changed to 0 by _Paolo Xausa_, May 22 2024