This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083318 #62 Sep 08 2022 08:45:10 %S A083318 1,3,5,9,17,33,65,129,257,513,1025,2049,4097,8193,16385,32769,65537, %T A083318 131073,262145,524289,1048577,2097153,4194305,8388609,16777217, %U A083318 33554433,67108865,134217729,268435457,536870913,1073741825,2147483649 %N A083318 a(0) = 1; for n>0, a(n) = 2^n + 1. %C A083318 Inverse binomial transform of A005056. %C A083318 Also, A000533 interpreted as binary numbers, written in base 10. Numbers whose representation in base 2 is has n+1 digits and the digit "1" is the initial and final digit and if n>1 then the internal digits are "0" (see example). - _Omar E. Pol_, Feb 24 2008 %C A083318 a(n) equals the number of ternary sequences of length n such that no two consecutive terms differ by 1. - _David Nacin_, May 31 2017 %H A083318 Vincenzo Librandi, <a href="/A083318/b083318.txt">Table of n, a(n) for n = 0..1000</a> %H A083318 Ramon Carbó-Dorca, <a href="https://doi.org/10.13140/RG.2.2.25069.13280">Boolean Hypercubes: The Origin of a Tagged Recursive Logic and the Limits of Artificial Intelligence</a>, Universitat de Girona (Spain, 2020). %H A083318 Quynh Nguyen, Jean Pedersen, and Hien T. Vu, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Pedersen/pedersen2.html">New Integer Sequences Arising From 3-Period Folding Numbers</a>, Vol. 19 (2016), Article 16.3.1. Cites this sequence. %H A083318 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2). %F A083318 a(n) = 2^n + 1^n - 0^n. %F A083318 G.f.: (1-2*x^2)/((1-x)*(1-2x)). %F A083318 E.g.f.: exp(2*x) + exp(x) - exp(0). %F A083318 a(n) = Sum_{k=0..n} 0^(k*(n-k))*2^(n-k). - _Paul Barry_, Feb 09 2005 %F A083318 a(n) = Min{m: A008687(m) = n+1}. - _Reinhard Zumkeller_, Jul 25 2006 %F A083318 Row sums of triangle A132749; = binomial transform of [1, 2, 0, 2, 0, 2, 0, 2, ...]. - _Gary W. Adamson_, Aug 28 2007 %F A083318 A020650(a(n)) = 1. - _Yosu Yurramendi_, Jun 01 2016 %e A083318 From _Omar E. Pol_, Feb 24 2008: (Start) %e A083318 ------------------------------ %e A083318 n .... a(n) .. a(n) in base 2 %e A083318 ------------------------------ %e A083318 0 ..... 1 ..... 1 %e A083318 1 ..... 3 ..... 11 %e A083318 2 ..... 5 ..... 101 %e A083318 3 ..... 9 ..... 1001 %e A083318 4 .... 17 ..... 10001 %e A083318 5 .... 33 ..... 100001 %e A083318 6 .... 65 ..... 1000001 %e A083318 7 ... 129 ..... 10000001 %e A083318 8 ... 257 ..... 100000001 %e A083318 9 ... 513 ..... 1000000001 %e A083318 (End) %e A083318 G.f. = 1 + 3*x + 5*x^2 + 9*x^3 + 17*x^4 + 33*x^5 + 65*x^6 + 129*x^7 + ... - _Michael Somos_, Jun 04 2016 %p A083318 seq(`if`(n=0, 1, 2^n + 1), n=0..40); # _G. C. Greubel_, Nov 20 2019 %t A083318 Join[{1},2^Range[40]+1] (* _Harvey P. Dale_, May 17 2013 *) %o A083318 (Magma) [2^n+1-0^n : n in [0..40]]; // _Vincenzo Librandi_, Sep 01 2011 %o A083318 (PARI) {a(n) = if( n<1, n==0, 2^n + 1)}; /* _Michael Somos_, Jun 04 2016 */ %o A083318 (Sage) [1]+[2^n +1 for n in (1..40)] # _G. C. Greubel_, Nov 20 2019 %o A083318 (GAP) Concatenation([1], List([1..40], n-> 2^n +1)); # _G. C. Greubel_, Nov 20 2019 %Y A083318 Except for the leading term, the same as A000051. %Y A083318 Cf. A000533, A083319, A132749. %K A083318 nonn,easy %O A083318 0,2 %A A083318 _Paul Barry_, Apr 25 2003 %E A083318 Edited by _N. J. A. Sloane_, Sep 28 2007