cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083342 Decimal expansion of average deviation of the total number of prime factors.

This page as a plain text file.
%I A083342 #34 Feb 16 2025 08:32:49
%S A083342 1,0,3,4,6,5,3,8,8,1,8,9,7,4,3,7,9,1,1,6,1,9,7,9,4,2,9,8,4,6,4,6,3,8,
%T A083342 2,5,4,6,7,0,3,0,7,9,8,4,3,4,4,3,8,5,2,5,4,5,0,3,0,7,0,2,8,1,2,8,1,6,
%U A083342 3,3,5,3,9,3,8,6,6,0,1,6,0,7,5,4,7,9,4,1,3,9,0,2,5,7,5,6,7,4,6,9,3,8
%N A083342 Decimal expansion of average deviation of the total number of prime factors.
%C A083342 Or, decimal expansion of constant B2 from the summatory function of the restricted divisor function.
%C A083342 The constant A in the asymptotic formula Sum_{prime p <= n} 1/(p-1) = log(log(n)) + A + O(1/log(n)) (Jakimczuk, 2017). - _Amiram Eldar_, Mar 18 2024
%D A083342 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, 2003, pp. 94-98.
%D A083342 József Sándor and Borislav Crstici, Handbook of Number Theory II, Kluwer Academic Publishers, 2004, p. 155, Chapter V, 1) b).
%H A083342 Rafael Jakimczuk, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Jakimczuk/jak37.html">On Sums of Powers of the p-adic Valuation of n!</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.5.6.
%H A083342 Dimbinaina Ralaivaosaona and Faratiana Brice Razakarinoro, <a href="https://arxiv.org/abs/2001.05782">An explicit upper bound for Siegel zeros of imaginary quadratic fields</a>, arXiv:2001.05782 [math.NT], 2020.
%H A083342 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MertensConstant.html">Mertens Constant</a>.
%H A083342 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeFactor.html">Prime Factor</a>.
%F A083342 Equals A077761 + A136141. - _Jean-François Alcover_, Sep 02 2015
%F A083342 Equals gamma + Sum_{p prime} (log(1-1/p) + 1/(p-1)), where gamma is Euler's constant (A001620). - _Amiram Eldar_, Dec 25 2021
%F A083342 From _Amiram Eldar_, Mar 18 2024: (Start)
%F A083342 Equals gamma + Sum_{k>=2} phi(k) * log(zeta(k)) / k, where phi = A000010.
%F A083342 Equals gamma - Sum_{p prime} 1/(p-1)^2 + Sum_{k>=2} J_2(k) * log(zeta(k)) / k, where J_2 = A007434.
%F A083342 Both formulas are from Jakimczuk (2017). (End)
%e A083342 1.03465388189743791161979429846463825467030798434438525450307...
%t A083342 digits = 102; Mp = EulerGamma - NSum[PrimeZetaP[n]/n - PrimeZetaP[n], {n, 2, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 3*digits]; RealDigits[Mp, 10, digits] // First (* _Jean-François Alcover_, Sep 02 2015 *)
%Y A083342 Cf. A000010, A001620, A007434, A077761, A086242, A136141.
%K A083342 nonn,cons
%O A083342 1,3
%A A083342 _Eric W. Weisstein_, Sep 25 2003