cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083363 Diagonal of table A083362.

This page as a plain text file.
%I A083363 #15 Oct 04 2023 17:22:22
%S A083363 1,7,11,30,38,69,81,124,140,195,215,282,306,385,413,504,536,639,675,
%T A083363 790,830,957,1001,1140,1188,1339,1391,1554,1610,1785,1845,2032,2096,
%U A083363 2295,2363,2574,2646,2869,2945,3180,3260,3507,3591,3850,3938,4209,4301,4584
%N A083363 Diagonal of table A083362.
%C A083363 A083362 is the square table of least distinct positive integers such that the sum of any two consecutive terms in any row form a square.
%H A083363 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1).
%F A083363 a(0) = 1; a(2n-1) = 8n^2 - n (n>0); a(2n) = 8n^2 + 3n (n>0).
%F A083363 a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5). - _Colin Barker_, Sep 26 2014
%F A083363 G.f.: (x^5-x^4-7*x^3-2*x^2-6*x-1) / ((x-1)^3*(x+1)^2). - _Colin Barker_, Sep 26 2014
%F A083363 a(n) = (4n+3)*(2n+1-(-1)^n)/4+0^n. - _Wesley Ivan Hurt_, Sep 26 2014
%p A083363 A083363:=n->(4*n+3)*(2*n+1-(-1)^n)/4+0^n: seq(A083363(n), n=0..50); # _Wesley Ivan Hurt_, Sep 26 2014
%t A083363 Join[{1}, Table[(4 n + 3) (2 n + 1 - (-1)^n)/4, {n, 30}]] (* _Wesley Ivan Hurt_, Sep 26 2014 *)
%t A083363 LinearRecurrence[{1,2,-2,-1,1},{1,7,11,30,38,69},50] (* _Harvey P. Dale_, Oct 04 2023 *)
%o A083363 (PARI) Vec((x^5-x^4-7*x^3-2*x^2-6*x-1)/((x-1)^3*(x+1)^2) + O(x^100)) \\ _Colin Barker_, Sep 26 2014
%o A083363 (Magma) [(4*n+3)*(2*n+1-(-1)^n)/4+0^n : n in [0..50]]; // _Wesley Ivan Hurt_, Sep 26 2014
%Y A083363 Cf. A083362.
%K A083363 nonn,easy
%O A083363 0,2
%A A083363 _Paul D. Hanna_, Apr 27 2003