This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083367 #26 Dec 29 2022 09:06:41 %S A083367 1,60,1959,149587,277947,1449933,2222863,2396214,24918486,25354845, %T A083367 48878262,1673533845,24753647943 %N A083367 Numbers k that are equal to the sum of its divisors after the digits of each divisor have been sorted in ascending order. %C A083367 No more terms through 10^8. - _Ryan Propper_, Sep 09 2005 %C A083367 a(13) > 10^10. - _Donovan Johnson_, Aug 28 2013 %C A083367 a(14) > 10^11. - _Giovanni Resta_, Aug 30 2013 %e A083367 a(3) = 1959 because the divisors of 1959 are [1, 3, 653, 1959] and 1+3+356+1599 = 1959. %t A083367 Do[l = IntegerDigits /@ Divisors[n]; l = Map[Sort[ # ]&, l]; k = Plus @@ Map[FromDigits[ # ]&, l]; If[k == n, Print[n]], {n, 1, 10^8}] (* _Ryan Propper_, Sep 09 2005 *) %t A083367 Select[Range[24*10^5],Total[FromDigits[Sort[IntegerDigits[#]]]&/@Divisors[#]] == #&] (* The program generates the first 8 terms of the sequence. *) (* _Harvey P. Dale_, Dec 28 2022 *) %o A083367 (PARI) is(n) = sumdiv(n,d,fromdigits(vecsort(digits(d))))==n \\ _David A. Corneth_, Dec 28 2022 %o A083367 (Python) %o A083367 from sympy import divisors %o A083367 def sa(n): return int("".join(sorted(str(n)))) %o A083367 def ok(n): return n == sum(sa(d) for d in divisors(n, generator=True)) %o A083367 print([k for k in range(1, 3*10**5) if ok(k)]) # _Michael S. Branicky_, Dec 28 2022 %Y A083367 Cf. A004185. %K A083367 nonn,base,more %O A083367 1,2 %A A083367 _Jason Earls_, Jun 11 2003 %E A083367 More terms from _Ryan Propper_, Sep 09 2005 %E A083367 a(12) from _Donovan Johnson_, Aug 28 2013 %E A083367 a(13) from _Giovanni Resta_, Aug 30 2013