This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083379 #22 Feb 15 2021 22:40:49 %S A083379 1,2,7,20,62,193,608,1918,6061,19160,60582,191568,605782,1915640, %T A083379 6057776,19156359,60577716,191563545,605777108,1915635402 %N A083379 a(n) = the number of squares with at most n digits and first digit 1. %C A083379 Asymptotically, the probability that a square begins with 1 is (sqrt(2)-1)/(sqrt(10)-1). %C A083379 A generalization to arbitrary powers is found in Hürlimann, 2004. As the power increases, the probability distribution approaches Benford's law. %H A083379 Robert Israel, <a href="/A083379/b083379.txt">Table of n, a(n) for n = 1..1999</a> %H A083379 W. Hürlimann, <a href="http://www.ijpam.eu/contents/2004-11-1/4/4.pdf">Integer powers and Benford's law</a>, International Journal of Pure and Applied Mathematics, vol. 11, no. 1, pp. 39-46, 2004. %H A083379 <a href="/index/Be#Benford">Index entries for sequences related to Benford's law</a> %p A083379 ListTools:-PartialSums([seq(floor(sqrt(2*10^n))-ceil(sqrt(10^n))+1, n=0..20)]); # _Robert Israel_, Feb 15 2021 %Y A083379 Cf. A083377, A083378, A083380. %K A083379 base,easy,nonn %O A083379 1,2 %A A083379 Werner S. Hürlimann (whurlimann(AT)bluewin.ch), Jun 05 2003 %E A083379 Edited by _Don Reble_, Nov 05 2005