A083404 Illustration of Viswanath's constant A078416.
1, 2, 6, 14, 32, 82, 196, 464, 1142, 2746, 6576, 15976, 38484, 92544, 223790, 539402, 1299184, 3136178, 7560760, 18222032, 43956888, 105980632, 255487040, 616137680, 1485562228, 3581617536, 8636505982, 20823634954, 50206996848
Offset: 0
Examples
a(2) = 6 = 1 +1 +3 +abs(-1), the 2^2 last terms in (1,1,0,1), (1,1,0,1), (1,1,2,3), (1,1,2,-1).
Links
- B. Rittaud, On the Average Growth of Random Fibonacci Sequences, Journal of Integer Sequences, 10 (2007), Article 07.2.4.
Crossrefs
Cf. Viswanath's constant A078416, V = 1.13198824...
Programs
-
Rexx
A.1 = 1; B.1 = 1; SSS = 1; do N = 1 to 18; M = 2**(N-1); Sum = 0; do K = 1 to M; L = K + M; ADD = A.K + B.K; SUB = A.K - B.K; A.K = B.K; A.L = B.K; B.K = ADD; B.L = SUB; Sum = Sum + abs( ADD ) + abs( SUB ); end K; SSS = SSS Sum; end N; say SSS
Formula
This sequence is exponentially increasing, with growth rate equal to x-1=1.20556943..., where x is the only real number solution of the equation x^3 = 2x^2 + 1. - Benoit Rittaud (rittaud(AT)math.univ-paris13.fr), Jan 20 2007
Extensions
More terms from David Wasserman, Nov 01 2004
Comments