This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083414 #15 Jun 14 2013 04:07:27 %S A083414 0,1,1,2,1,4,1,2,3,5,2,6,1,5,5,5,2,10,2,6,5,8,3,9,5,8,5,9,4,17,3,9,7, %T A083414 9,6,15,4,9,8,13,4,21,3,11,10,11,4,17,5,15,9,14,5,20,8,14,9,14,6,27,6, %U A083414 15,12,14,9,26,6,15,12,23,5,25,3,15,13,17,8,29,7,20,12,17,7,32 %N A083414 Write the numbers from 1 to n^2 consecutively in n rows of length n; let c(k) = number of primes in k-th column; a(n) = minimal c(k) for gcd(k,n) = 1. %C A083414 Conjectured to be always positive for n>1. %C A083414 Note that a(n) is large when phi(n), the number of integers relatively prime to n, is small and vice versa. - _T. D. Noe_, Jun 10 2003 %C A083414 The conjecture is true for all n <= 40000. %D A083414 See A083382 for references and links. %H A083414 T. D. Noe, <a href="/A083414/b083414.txt">Table of n, a(n) for n=1..2000</a> %e A083414 For n = 4 the array is %e A083414 . 1 2 3 4 %e A083414 . 5 6 7 8 %e A083414 . 9 10 11 12 %e A083414 . 13 14 15 16 %e A083414 in which columns 1 and 3 contain 2 and 3 primes; therefore a(4) = 2. %t A083414 Table[minP=n; Do[If[GCD[c, n]==1, s=0; Do[If[PrimeQ[c+(r-1)*n], s++ ], {r, n}]; minP=Min[s, minP]], {c, n}]; minP, {n, 100}] %o A083414 (Haskell) %o A083414 a083414 n = minimum $ map c $ filter ((== 1) . (gcd n)) [1..n] where %o A083414 c k = sum $ map a010051 $ enumFromThenTo k (k + n) (n ^ 2) %o A083414 -- _Reinhard Zumkeller_, Jun 10 2012 %Y A083414 Cf. A083415 and A083382 for primes in rows. %Y A083414 A084927 generalizes this to three dimensions. %Y A083414 Cf. A010051. %K A083414 nonn %O A083414 1,4 %A A083414 _N. J. A. Sloane_, Jun 10 2003 %E A083414 More terms from _Vladeta Jovovic_ and _T. D. Noe_, Jun 10 2003