This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083479 #40 Feb 18 2024 01:36:39 %S A083479 0,1,1,1,2,2,3,3,4,5,5,6,7,7,8,9,10,10,11,12,13,13,14,15,16,17,17,18, %T A083479 19,20,21,21,22,23,24,25,26,26,27,28,29,30,31,31,32,33,34,35,36,37,37, %U A083479 38,39,40,41,42,43,43,44,45,46,47,48,49,50,50,51,52,53,54,55,56,57,57 %N A083479 The natural numbers with all terms of A033638 inserted. %C A083479 Row n of A049597 has a(n+1) nonzero values. %C A083479 When considering the set of nested parabolas defined by -(x^2) + p*x for integer values of p, a(n) tells us how many parabolas are intersected by the line from (1,n) to (n,n). - _Gregory R. Bryant_, Apr 01 2013 %C A083479 Number of distinct perimeters for polyominoes with n square cells. - _Wesley Prosser_, Sep 06 2017 %H A083479 Reinhard Zumkeller, <a href="/A083479/b083479.txt">Table of n, a(n) for n = 0..10000</a> %F A083479 a(n) = (n+2) - ceiling(sqrt(4*n)), for n > 0. - _Gregory R. Bryant_, Apr 01 2013 %F A083479 From _Wesley Prosser_, Sep 06 2017: (Start) %F A083479 a(n) = (n+2) - A027709(n)/2. %F A083479 a(n) = (n+2) - A027434(n). %F A083479 a(n) = (2n+2) - A049068(n). %F A083479 a(n) = (2n+3) - A080037(n). %F A083479 (End) %e A083479 There are three 1's, one from the natural numbers and two from A033638. %e A083479 When viewed as an array the sequence begins: %e A083479 0 %e A083479 1 %e A083479 1 1 %e A083479 2 2 %e A083479 3 3 4 %e A083479 5 5 6 %e A083479 7 7 8 9 %e A083479 10 10 11 12 %e A083479 13 13 14 15 16 %e A083479 17 17 18 19 20 %e A083479 21 21 22 23 24 25 %e A083479 26 26 27 28 29 30 %e A083479 ... %t A083479 Table[(n + 2) - Ceiling@ Sqrt[4 n] - 2 Boole[n == 0], {n, 0, 73}] (* _Michael De Vlieger_, Sep 05 2017 *) %o A083479 (Haskell) %o A083479 a083479 n = a083479_list !! n %o A083479 a083479_list = m [0..] a033638_list where %o A083479 m xs'@(x:xs) ys'@(y:ys) | x <= y = x : m xs ys' %o A083479 | otherwise = y : m xs' ys %o A083479 -- _Reinhard Zumkeller_, Apr 06 2012 %o A083479 (Maxima) %o A083479 a(n):=((n+2)-ceiling(sqrt(4*n))); /* _Gregory R. Bryant_, Apr 01 2013 */ %o A083479 (Python) %o A083479 from math import isqrt %o A083479 def A083479(n): return n+1-isqrt((n<<2)-1) if n else 0 # _Chai Wah Wu_, Jul 28 2022 %o A083479 (Magma) [n eq 0 select 0 else (n+2)-Ceiling(Sqrt(4*n)): n in [0..100]]; // _G. C. Greubel_, Feb 17 2024 %o A083479 (SageMath) [(n+2)-ceil(sqrt(4*n)) -2*int(n==0) for n in range(101)] # _G. C. Greubel_, Feb 17 2024 %Y A083479 Cf. A002620, A027434, A027709, A033638, A049068, A049597. %Y A083479 Cf. A054243, A060510, A080037, A083480, A083906. %K A083479 easy,nonn,tabf %O A083479 0,5 %A A083479 _Alford Arnold_, Jun 08 2003 %E A083479 Edited and extended by _David Wasserman_, Nov 16 2004