cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083480 Compress the triangular array A049597 by suppressing zero entries and reversing the order of each row.

This page as a plain text file.
%I A083480 #14 Feb 19 2015 08:38:58
%S A083480 1,2,3,4,1,5,2,6,3,2,7,4,4,8,5,6,3,9,6,8,6,1,10,7,10,9,6,11,8,12,12,
%T A083480 11,2,12,9,14,15,16,9,2,13,10,16,18,21,16,7,14,11,18,21,26,23,18,4,15,
%U A083480 12,20,24,31,30,29,12,3,16,13,22,27,36,37,40,27,12,1,17,14,24,30,41,44,51
%N A083480 Compress the triangular array A049597 by suppressing zero entries and reversing the order of each row.
%C A083480 Row sums => A000041. Diagonals are sums of Gaussian polynomials (which then sum to powers of two). The number of entries on each row is conjectured to conform to: 0 1 1 1 2 2 3 3 4 5 5 6 7 7 8 9 10 10 11 12 13 13 14 15 16 17 17 ... a sequence which stutters after values 0,1,2,4,6,9,12,16,...A002620.
%C A083480 Regarding the first element of the sequence as T(1,0), it appears that this is the number of partitions of n with k elements not in the first hook; i.e., with n - (max part size) - (number of parts) + 1 = k. If this is correct, we have T(n,0) = n and for k > 0, T(n,k) = sum_{j >= max(0,2k-n+2)} j * T(k,j). This is equivalent to T(n,k) = T(n-1,k) + sum_{j >= max(0,2k-n+2)} T(k,j) and thus to T(n,k) = 2* T(n-1,k) - T(n-2,k) + T(k,2k-n+2) [taking T(n,k) = 0 if k < 0]. It also implies the correctness of the conjecture about the row lengths. - _Franklin T. Adams-Watters_, May 27 2008
%e A083480 The table begins:
%e A083480 1
%e A083480 2
%e A083480 3
%e A083480 4 1
%e A083480 5 2
%e A083480 6 3 2
%e A083480 7 4 4
%e A083480 8 5 6 3
%e A083480 9 6 8 6 1
%e A083480 ...
%p A083480 a:=n->sort(simplify(sum(product((1-q^i),i=n-r+1..n)/product((1-q^j),j=1..r), r=0..n))):T := proc(n,k) if k=n then n+1 elif k>n then 0 else coeff(a(k),q^(n-k)) fi end: b:=proc(n,k) if T(n,n-k)>0 then T(n,n-k) else fi end:seq(seq(b(n,k),k=0..n+1),n=0..20); # _Emeric Deutsch_, May 15 2004
%t A083480 a[n_] := Sum[Product[1-q^i, {i, n-r+1, n}]/Product[1-q^j, {j, 1, r}], {r, 0, n}] // Simplify; T [n_, k_] := Which[k == n, n+1, k>n, 0, True, Coefficient[a[k], q^(n - k)]]; Table[Table[T[n, k], {k, n, 0, -1}] // DeleteCases[#, 0]&, {n, 0,  21}] // Flatten (* _Jean-François Alcover_, Feb 19 2015, after Maple *)
%Y A083480 Cf. A049597, A033638.
%K A083480 nonn,tabf
%O A083480 1,2
%A A083480 _Alford Arnold_, Jun 08 2003
%E A083480 More terms from _Emeric Deutsch_, May 15 2004