This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083502 #15 Aug 03 2025 16:10:53 %S A083502 1,2,18,16,1550,2598,299586,812,29118,348678430,67546215506,20345040, %T A083502 61054982557998,281241170407078,76861433640456450,2690404, %U A083502 128583032925805678334,211927625850,275941052631578947368402,174339200 %N A083502 Smallest k such that n*(n+k) + 1 is an n-th power. %C A083502 Sequence is obviously infinite. %C A083502 If the sequence is restricted to only prime n's, the sequence increases absolutely. See comment in A083503. %C A083502 [Since there is actually no comment in A083503: this probably means to say that (conjectural!) A083503(prime(n)) = A008864(n) which leads to a(p) = Sum_{s=2..p} binomial(p,s)*p^(s-1) for primes p, an increasing subsequence. - _R. J. Mathar_, Aug 01 2025] %C A083502 a(n) = (x^n-1)/n - n, where x is the least integer > 1 with x^n == 1 (mod n). - _Robert Israel_, Aug 01 2025 %H A083502 Robert Israel, <a href="/A083502/b083502.txt">Table of n, a(n) for n = 1..388</a> %p A083502 A083502 := proc(n) %p A083502 local a,b ; %p A083502 if n = 1 then %p A083502 1 ; %p A083502 else %p A083502 for b from 2 do %p A083502 a := (b^n-1)/n-n ; %p A083502 if type( a,'integer') then %p A083502 return a; %p A083502 end if; %p A083502 end do: %p A083502 end if; %p A083502 end proc: %p A083502 seq(A083502(n),n=1..20) ; # _R. J. Mathar_, Aug 01 2025 %p A083502 # alternative %p A083502 f:= proc(n) local X,S; %p A083502 S:= min(map(t -> subs(t,X), {msolve(X^n = 1, n)} minus {{X=1}})); %p A083502 if S = infinity then ((n+1)^n - 1)/n - n else (S^n-1)/n - n fi %p A083502 end proc: %p A083502 f(1):= 1: %p A083502 map(f, [$1..50]); # _Robert Israel_, Aug 01 2025 %t A083502 Do[i = 2; While[k = (i^n - 1)/n - n; !IntegerQ[k], i++ ]; Print[k], {n, 1, 20}] %Y A083502 The i's in the above Mathematica coding, except for a(1), give A055670. %Y A083502 Cf. A083500, A083503. %K A083502 nonn %O A083502 1,2 %A A083502 _Amarnath Murthy_ and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 03 2003 %E A083502 Edited and extended by _Robert G. Wilson v_, May 11 2003