A083503 Basis of the n-th power arising in A083502.
3, 3, 4, 3, 6, 5, 8, 3, 4, 9, 12, 5, 14, 13, 16, 3, 18, 5, 20, 3, 4, 21, 24, 5, 6, 25, 4, 13, 30, 11, 32, 3, 34, 33, 36, 5, 38, 37, 16, 3, 42, 5, 44, 21, 16, 45, 48, 5, 8, 9, 52, 5, 54, 5, 16, 13, 7, 57, 60, 7, 62, 61, 4, 3, 66, 23, 68, 13, 70, 29, 72, 5, 74, 73, 16, 37, 78, 17, 80, 3, 4
Offset: 1
Keywords
Examples
2*(2+2)+1=3^2; 3*(3+18)+1=4^3; 4*(4+16)+1=3^4; 5*(5+1550)+1=6^5; 6*(6+2598)+1=5^6; 7*(7+299586)+1=8^7; 8*(8+812)+1=3^8; 9*(9+29118)+1=4^9; 10*(10+348678430)+1=9^10. - _R. J. Mathar_, Aug 01 2025
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A083503 := proc(n) local a,b ; if n = 1 then 3 ; else for b from 2 do a := (b^n-1)/n-n ; if type( a,'integer') then return b; end if; end do: end if; end proc: seq(A083503(n),n=1..80) ; # R. J. Mathar, Aug 01 2025 # alternative: f:= proc(n) local X,S; S:= min(map(t -> subs(t,X), {msolve(X^n = 1, n)} minus {{X=1}})); if S = infinity then n+1 else S fi end proc: f(1):= 3: map(f, [$1..100]); # Robert Israel, Aug 01 2025
-
Mathematica
Do[i = 2; While[k = (i^n - 1)/n - n; !IntegerQ[k], i++ ]; Print[i], {n, 2, 81}]
Formula
n*(n + A083502(n)) + 1 = a(n)^n. - R. J. Mathar, Aug 01 2025
Extensions
Edited and extended by Robert G. Wilson v, May 11 2003
Comments