cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083503 Basis of the n-th power arising in A083502.

Original entry on oeis.org

3, 3, 4, 3, 6, 5, 8, 3, 4, 9, 12, 5, 14, 13, 16, 3, 18, 5, 20, 3, 4, 21, 24, 5, 6, 25, 4, 13, 30, 11, 32, 3, 34, 33, 36, 5, 38, 37, 16, 3, 42, 5, 44, 21, 16, 45, 48, 5, 8, 9, 52, 5, 54, 5, 16, 13, 7, 57, 60, 7, 62, 61, 4, 3, 66, 23, 68, 13, 70, 29, 72, 5, 74, 73, 16, 37, 78, 17, 80, 3, 4
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 03 2003

Keywords

Comments

For n > 1, a(n) = A074792(n) is the least solution > 1 of x^n == 1 (mod n). - Robert Israel, Aug 01 2025

Examples

			2*(2+2)+1=3^2; 3*(3+18)+1=4^3; 4*(4+16)+1=3^4; 5*(5+1550)+1=6^5; 6*(6+2598)+1=5^6; 7*(7+299586)+1=8^7; 8*(8+812)+1=3^8; 9*(9+29118)+1=4^9; 10*(10+348678430)+1=9^10. - _R. J. Mathar_, Aug 01 2025
		

Crossrefs

Programs

  • Maple
    A083503 := proc(n)
        local a,b ;
        if n = 1 then
            3 ;
        else
            for b from 2 do
                a := (b^n-1)/n-n ;
                if type( a,'integer') then
                    return  b;
                end if;
            end do:
        end if;
    end proc:
    seq(A083503(n),n=1..80) ; # R. J. Mathar, Aug 01 2025
    # alternative:
    f:= proc(n) local X,S;
      S:= min(map(t -> subs(t,X), {msolve(X^n = 1, n)} minus {{X=1}}));
      if S = infinity then n+1 else S fi
    end proc:
    f(1):= 3:
    map(f, [$1..100]); # Robert Israel, Aug 01 2025
  • Mathematica
    Do[i = 2; While[k = (i^n - 1)/n - n; !IntegerQ[k], i++ ]; Print[i], {n, 2, 81}]

Formula

n*(n + A083502(n)) + 1 = a(n)^n. - R. J. Mathar, Aug 01 2025

Extensions

Edited and extended by Robert G. Wilson v, May 11 2003