A083531 First difference sequence of A002191. Differences between possible values for sum of divisors of n.
2, 1, 2, 1, 1, 4, 1, 1, 1, 3, 2, 4, 4, 2, 1, 1, 4, 2, 1, 1, 2, 2, 4, 6, 2, 1, 3, 2, 1, 5, 4, 2, 4, 2, 4, 6, 1, 2, 3, 2, 4, 2, 4, 2, 2, 2, 6, 1, 3, 2, 1, 1, 4, 1, 5, 2, 4, 6, 2, 4, 2, 2, 2, 2, 4, 3, 3, 2, 4, 2, 1, 3, 6, 2, 1, 3, 2, 4, 6, 2, 4, 1, 5, 2, 4, 2, 4, 6, 2, 6, 4, 3, 1, 2, 2, 4, 2, 4, 2, 6, 2, 2, 2, 4, 6
Offset: 1
Keywords
Examples
8 and 12 are the 6th and 7th possible values for sigma(x), since they are sum of divisors of x = 7 and x = 11 respectively, while 9, 10, 11 are impossible ones so 12 - 8 = 4 = a(6) = A002191(7) - A002191(6). From _Michael De Vlieger_, Jul 22 2017: (Start) First position of values: Value First position 1 2 2 1 3 10 4 6 5 30 6 24 7 277 8 165 9 509 10 150 11 824 12 400 13 10970 14 1400 15 10448 16 1182 17 18731 18 2218 19 209237 20 3420 21 127385 22 6910 23 28899 24 5377 (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
t=Table[DivisorSigma[1, w], {w, 1, 25000}]; u=Union[%]; Delete[u-RotateRight[u], 1] (* Second program: *) With[{nn = 300}, Differences@ TakeWhile[Union@ DivisorSigma[1, Range@ nn], # < nn &]] (* Michael De Vlieger, Jul 22 2017 *)