cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083549 Quotient if least common multiple (lcm) of cototient values of consecutive integers is divided by the greatest common divisor (gcd) of the same pair of consecutive numbers.

This page as a plain text file.
%I A083549 #13 Mar 17 2018 12:14:17
%S A083549 0,1,2,2,4,4,4,12,2,6,8,8,8,56,56,8,12,12,12,12,12,12,16,80,70,126,
%T A083549 144,16,22,22,16,208,234,198,264,24,20,12,40,24,30,30,24,56,56,24,32,
%U A083549 224,210,570,532,28,36,60,480,672,70,30,44,44,32,864,864,544,782,46,36,900
%N A083549 Quotient if least common multiple (lcm) of cototient values of consecutive integers is divided by the greatest common divisor (gcd) of the same pair of consecutive numbers.
%H A083549 Michael De Vlieger, <a href="/A083549/b083549.txt">Table of n, a(n) for n = 1..10000</a>
%F A083549 a(n) = lcm(A051953(n), A051952(n+1))/gcd(A051953(n), A051952(n+1)) = lcm(cototient(n+1), cototient(n))/A049586(n).
%e A083549 n=33: cototient(33) = 33-20 = 13, cototient(34) = 34-16 = 18;
%e A083549 lcm(13,18) = 234, gcd(13,18) = 1, so a(34) = 234.
%t A083549 f[x_] := x-EulerPhi[x]; Table[LCM[f[w+1], f[w]]/GCD[f[w+1], f[w]], {w, 69}]
%t A083549 (* Second program: *)
%t A083549 Map[Apply[LCM, #]/Apply[GCD, #] &@ Map[# - EulerPhi@ # &, #] &, Partition[Range[69], 2, 1]] (* _Michael De Vlieger_, Mar 17 2018 *)
%Y A083549 Cf. A051953, A083538, A083539, A083540, A083541, A083542, A083543, A083544, A083545, A083546, A083547, A083548, A083549, A083550, A083551, A083552, A083553, A083554, A083555, A049586.
%K A083549 nonn
%O A083549 1,3
%A A083549 _Labos Elemer_, May 22 2003