This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083552 #46 Apr 09 2021 03:50:45 %S A083552 2,1,2,2,2,2,2,6,3,3,6,2,2,6,1,3,3,6,2,3,6,6,12,2,2,2,2,2,14,14,6,3,5, %T A083552 5,3,1,6,6,1,3,5,5,2,2,6,1,3,2,2,6,3,5,15,1,1,3,3,6,2,5,35,14,2,2,14, %U A083552 21,15,5,2,6,12,12,1,6,6,12,2,2,20,5,5,5,3,6,6,12,2,2,2,3,6,2,2,2,6,2,6,9 %N A083552 Quotient when LCM of 2 consecutive prime differences is divided by GCD of the same two differences. %C A083552 Conjecture: Every positive integer appears infinitely many times in this sequence. Example: a(834) = a(909) = ... = a(9901) = ... = 4. - _Jerzy R Borysowicz_, Dec 22 2018 %C A083552 All terms of this sequence are integers because gcd(r,s) divides lcm(r,s) for any r and s. - _Jerzy R Borysowicz_, Jan 05 2019 %H A083552 Amiram Eldar, <a href="/A083552/b083552.txt">Table of n, a(n) for n = 1..10000</a> %F A083552 a(n) = lcm(A001223(n), A001223(n+1))/gcd(A001223(n), A001223(n+1)); %F A083552 a(n) = A083551(n)/A057467(n). %t A083552 f[x_] := Prime[x+1]-Prime[x]; Table[LCM[f[w+1], f[w]]/GCD[f[w+1], f[w]], {w, 1, 128}] %o A083552 (PARI) a(n) = my(da=prime(n+2)-prime(n+1), db=prime(n+1)-prime(n)); lcm(da, db)/gcd(da, db) \\ _Felix Fröhlich_, Jan 05 2019 %Y A083552 Cf. A001223, A083538-A083555, A057467. %K A083552 nonn %O A083552 1,1 %A A083552 _Labos Elemer_, May 22 2003