This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083558 #17 Sep 08 2022 08:45:10 %S A083558 6,21,105,301,1221,2041,4641,6517,11661,23577,28861,49321,67281,77701, %T A083558 101661,146121,201957,223321,296341,352941,383761,486877,564981, %U A083558 697137,903361,1020201,1082221,1213701,1283257,1430241,2032381,2231061,2552721,2666437 %N A083558 p(p^2-p+1) as p runs through the primes. %C A083558 Warning: not all quizzes permit the use of the OEIS! %C A083558 Discard (from the list of integers) numbers that have exactly 1 factor of prime(n) in their prime factorization. Of those remaining, the proportion that have exactly 2 factors of prime(n) is (prime(n)-1)/a(n). - _Peter Munn_, Nov 27 2020 %H A083558 Vincenzo Librandi, <a href="/A083558/b083558.txt">Table of n, a(n) for n = 1..1000</a> %F A083558 a(n) = A000040(n) * A119959(n). - _Peter Munn_, Nov 29 2020 %t A083558 Table[p(p^2-p+1),{p,Prime[Range[40]]}] (* _Harvey P. Dale_, Jan 09 2017 *) %o A083558 (Magma) [p*(p^2-p+1): p in PrimesUpTo(150)]; // _Vincenzo Librandi_, Jan 10 2017 %Y A083558 Cf. A000040, A119959. %K A083558 nonn %O A083558 1,1 %A A083558 _N. J. A. Sloane_, Jun 15 2003