cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083662 a(n) = a(floor(n/2)) + a(floor(n/4)), n > 0; a(0)=1.

This page as a plain text file.
%I A083662 #12 Jun 20 2018 01:32:49
%S A083662 1,2,3,3,5,5,5,5,8,8,8,8,8,8,8,8,13,13,13,13,13,13,13,13,13,13,13,13,
%T A083662 13,13,13,13,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,
%U A083662 21,21,21,21,21,21,21,21,21,21,21,21,21,34,34,34,34,34,34,34,34,34,34,34
%N A083662 a(n) = a(floor(n/2)) + a(floor(n/4)), n > 0; a(0)=1.
%C A083662 A000045(n+2) = a(A131577(n))and A000045(m+2) < a(m) for m < A131577(n). - _Reinhard Zumkeller_, Sep 26 2009
%H A083662 R. Zumkeller, <a href="/A083662/b083662.txt">Table of n, a(n) for n = 0..10000</a>
%F A083662 For n > 0, a(n) = F([log(n)/log(2)]+3) where F(k) denotes the k-th Fibonacci number. For n >= 3, F(n) appears 2^(n-3) times. More generally, if p is an integer > 1 and a(n) = a(floor(n/p)) + a(floor(n/p^2)), n > 0, a(0)=1, then for n > 0, a(n) = F(floor(log(n)/log(p)) + 3).
%o A083662 (PARI) a(n)=if(n<1,n==0,a(n\2)+a(n\4))
%Y A083662 Cf. A088468.
%Y A083662 A007731, A165704, A165706. - _Reinhard Zumkeller_, Sep 26 2009
%K A083662 nonn
%O A083662 0,2
%A A083662 _Benoit Cloitre_, Oct 05 2003