This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083697 #8 Jan 15 2022 09:47:51 %S A083697 1,2,24,2688,32342016,4677882957791232, %T A083697 97861912906883207538212742365184, %U A083697 42829440312913272520181533609472356498655100482256687829780267008 %N A083697 a(n) = 2^(2^n - 1) * Fibonacci(2^n). %C A083697 A083696(n)/a(n) converges to sqrt(5). %C A083697 Similar to A081460: a(n) is the denominator of the same mapping f(r)=(1/2)(r+5/r) but with initial value r=1. %H A083697 G. C. Greubel, <a href="/A083697/b083697.txt">Table of n, a(n) for n = 0..10</a> %F A083697 a(n) = 2*a(n-1)*A083696(n-1). %F A083697 a(n) = A058635(n) * A058891(n). %F A083697 a(n) = 2^(2^n - 1) * A000045(2^n). %F A083697 a(n) = Sum_{r=0..(2^n -1)} (5^r/(2*r+1)!)*Product_{k=0..2*r} (2^n - k). %t A083697 Table[Sum[Product[2^n -k, {k,0,2*r}]k^r/(2*r+1)!, {r,0,2^n -1}], {n,0,8}] %t A083697 Table[2^(2^n -1)*Fibonacci[2^n], {n,0,8}] (* _G. C. Greubel_, Jan 14 2022 *) %o A083697 (Sage) [2^(2^n -1)*lucas_number1(2^n, 1, -1) for n in (0..8)] # _G. C. Greubel_, Jan 14 2022 %o A083697 (Magma) [2^(2^n -1)*Fibonacci(2^n): n in [0..8]]; // _G. C. Greubel_, Jan 14 2022 %Y A083697 Cf. A000045, A058635, A058891, A081460, A083696. %K A083697 easy,nonn %O A083697 0,2 %A A083697 Mario Catalani (mario.catalani(AT)unito.it), May 22 2003 %E A083697 The next term is too large to include. %E A083697 Better description from _Ralf Stephan_, Aug 29 2004