This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083711 #30 Jul 02 2025 16:02:01 %S A083711 1,1,1,2,1,4,1,5,3,7,1,14,1,13,8,20,1,33,1,40,14,44,1,85,6,79,25,117, %T A083711 1,181,1,196,45,233,17,389,1,387,80,545,1,750,1,839,165,1004,1,1516, %U A083711 12,1612,234,2040,1,2766,48,3142,388,3720,1,5295,1,5606,663,7038,83,9194,1,10379,1005 %N A083711 a(n) = A083710(n) - A000041(n-1). %C A083711 Number of integer partitions of n with no 1's with a part dividing all the others. If n > 0, we can assume such a part is the smallest. - _Gus Wiseman_, Apr 18 2021 %D A083711 L. M. Chawla, M. O. Levan and J. E. Maxfield, On a restricted partition function and its tables, J. Natur. Sci. and Math., 12 (1972), 95-101. %H A083711 Alois P. Heinz, <a href="/A083711/b083711.txt">Table of n, a(n) for n = 1..10000</a> %F A083711 a(n) = Sum_{ d|n, d<n} A000041(d-1). %e A083711 From _Gus Wiseman_, Apr 18 2021: (Start) %e A083711 The a(6) = 4 through a(12) = 13 partitions: %e A083711 (6) (7) (8) (9) (10) (11) (12) %e A083711 (3,3) (4,4) (6,3) (5,5) (6,6) %e A083711 (4,2) (6,2) (3,3,3) (8,2) (8,4) %e A083711 (2,2,2) (4,2,2) (4,4,2) (9,3) %e A083711 (2,2,2,2) (6,2,2) (10,2) %e A083711 (4,2,2,2) (4,4,4) %e A083711 (2,2,2,2,2) (6,3,3) %e A083711 (6,4,2) %e A083711 (8,2,2) %e A083711 (3,3,3,3) %e A083711 (4,4,2,2) %e A083711 (6,2,2,2) %e A083711 (4,2,2,2,2) %e A083711 (2,2,2,2,2,2) %e A083711 (End) %p A083711 with(combinat): with(numtheory): a := proc(n) c := 0: l := sort(convert(divisors(n), list)): for i from 1 to nops(l)-1 do c := c+numbpart(l[i]-1) od: RETURN(c): end: for j from 2 to 100 do printf(`%d,`,a(j)) od: # _James Sellers_, Jun 21 2003 %p A083711 # second Maple program: %p A083711 a:= n-> max(1, add(combinat[numbpart](d-1), d=numtheory[divisors](n) minus {n})): %p A083711 seq(a(n), n=1..69); # _Alois P. Heinz_, Feb 15 2023 %t A083711 a[n_] := If[n==1, 1, Sum[PartitionsP[d-1], {d, Most@Divisors[n]}]]; %t A083711 Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Feb 15 2023 *) %Y A083711 Allowing 1's gives A083710. %Y A083711 The strict case is A098965. %Y A083711 The complement (except also without 1's) is counted by A338470. %Y A083711 The dual version is A339619. %Y A083711 A000005 counts divisors. %Y A083711 A000041 counts partitions. %Y A083711 A000070 counts partitions with a selected part. %Y A083711 A006128 counts partitions with a selected position. %Y A083711 A018818 counts partitions into divisors (strict: A033630). %Y A083711 A167865 counts strict chains of divisors > 1 summing to n. %Y A083711 A339564 counts factorizations with a selected factor. %Y A083711 Cf. A001787, A001792, A015723, A097986, A098743, A130689, A130714, A264401, A339563, A342193. %K A083711 nonn,easy %O A083711 1,4 %A A083711 _N. J. A. Sloane_, Jun 16 2003 %E A083711 More terms from _James Sellers_, Jun 21 2003