cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083732 Pseudoprimes to bases 2 and 5.

This page as a plain text file.
%I A083732 #20 Jun 29 2019 08:58:52
%S A083732 561,1729,2821,5461,6601,8911,12801,13981,15841,29341,41041,46657,
%T A083732 52633,63973,68101,75361,101101,113201,115921,126217,137149,162401,
%U A083732 172081,188461,252601,294409,314821,334153,340561,399001,401401,410041,488881
%N A083732 Pseudoprimes to bases 2 and 5.
%H A083732 Amiram Eldar, <a href="/A083732/b083732.txt">Table of n, a(n) for n = 1..16699</a> (terms 1..169 from R. J. Mathar)
%H A083732 F. Richman, <a href="http://math.fau.edu/Richman/carm.htm">Primality testing with Fermat's little theorem</a>
%F A083732 a(n) = n-th positive integer k(>1) such that 2^(k-1) = 1 (mod k) and 5^(k-1) = 1 (mod k).
%e A083732 a(1)=561 since 561 is the first positive integer k(>1) which satisfies 2^(k-1) = 1 (mod k) and 5^(k-1) = 1 (mod k).
%t A083732 Select[Range[1, 10^5, 2], CompositeQ[#] &&  PowerMod[2, #-1,#] == PowerMod[5, #-1,#] == 1 &] (* _Amiram Eldar_, Jun 29 2019 *)
%o A083732 (PARI) lista(nn) = forcomposite(n=1, nn, if ((Mod(2, n)^(n-1)==1) && (Mod(5, n)^(n-1)==1), print1(n, ", "));); \\ _Michel Marcus_, Sep 08 2016
%Y A083732 Intersection of A001567 and A005936. - _R. J. Mathar_, Apr 05 2011
%K A083732 easy,nonn
%O A083732 1,1
%A A083732 Serhat Sevki Dincer (sevki(AT)ug.bilkent.edu.tr), May 05 2003