cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A083736 Pseudoprimes to bases 2,5 and 7.

Original entry on oeis.org

561, 29341, 46657, 75361, 115921, 162401, 252601, 294409, 314821, 334153, 340561, 399001, 410041, 488881, 512461, 530881, 552721, 656601, 658801, 710533, 721801, 852841, 1024651, 1141141, 1152271, 1168513, 1193221, 1461241, 1569457, 1615681
Offset: 1

Views

Author

Serhat Sevki Dincer (sevki(AT)ug.bilkent.edu.tr), May 05 2003

Keywords

Examples

			a(1)=561 since it is the first number such that 2^(k-1) = 1 (mod k), 5^(k-1) = 1 (mod k) and 7^(k-1) = 1 (mod k).
		

Crossrefs

Intersection of A083732 and A005938. Intersection of A083733 and A005936. - R. J. Mathar, Apr 05 2011

Programs

  • Mathematica
    Select[Range[1, 10^5, 2], CompositeQ[#] &&  PowerMod[2, #-1,#] == PowerMod[5, #-1,#] == PowerMod[7, #-1,#] == 1&] (* Amiram Eldar, Jun 29 2019 *)

Formula

a(n) = n-th positive integer k(>1) such that 2^(k-1) = 1 (mod k), 5^(k-1) = 1 (mod k) and 7^(k-1) = 1 (mod k).

A083738 Pseudoprimes to bases 2,3 and 7.

Original entry on oeis.org

1105, 2465, 10585, 18721, 29341, 46657, 75361, 104653, 115921, 162401, 226801, 252601, 278545, 294409, 314821, 334153, 340561, 399001, 410041, 449065, 488881, 512461, 530881, 534061, 552721, 574561, 658801, 721801, 852841, 1024651
Offset: 1

Views

Author

Serhat Sevki Dincer (sevki(AT)ug.bilkent.edu.tr), May 05 2003

Keywords

Examples

			a(1)=1105 since it is the first number such that 2^(k-1) = 1 (mod k), 3^(k-1) = 1 (mod k) and 7^(k-1) = 1 (mod k).
		

Crossrefs

Intersection of A001567 and A083735. Intersection of A005935 and A083733. - R. J. Mathar, Apr 05 2011

Programs

  • Mathematica
    Select[Range[1, 10^5, 2], CompositeQ[#] &&  PowerMod[2, #-1,#] == PowerMod[3, #-1,#] == PowerMod[7, #-1,#] == 1&] (* Amiram Eldar, Jun 29 2019 *)

Formula

a(n) = n-th positive integer k(>1) such that 2^(k-1) = 1 (mod k), 3^(k-1) = 1 (mod k) and 7^(k-1) = 1 (mod k).
Showing 1-2 of 2 results.