A083737 Pseudoprimes to bases 2, 3 and 5.
1729, 2821, 6601, 8911, 15841, 29341, 41041, 46657, 52633, 63973, 75361, 101101, 115921, 126217, 162401, 172081, 188461, 252601, 294409, 314821, 334153, 340561, 399001, 410041, 488881, 512461, 530881, 552721, 658801, 670033, 721801, 748657
Offset: 1
Examples
a(1)=1729 since it is the first number such that 2^(k-1) == 1 (mod k), 3^(k-1) == 1 (mod k) and 5^(k-1) == 1 (mod k).
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 102 from R. J. Mathar)
- J. Bernheiden, Pseudoprimes (Text in German)
- F. Richman, Primality testing with Fermat's little theorem
- Index entries for sequences related to pseudoprimes
Programs
-
Mathematica
Select[ Range[838200], !PrimeQ[ # ] && PowerMod[2, # - 1, # ] == 1 && PowerMod[3, 1 - 1, # ] == 1 && PowerMod[5, # - 1, # ] == 1 & ]
-
PARI
is(n)=!isprime(n)&&Mod(2,n)^(n-1)==1&&Mod(3,n)^(n-1)==1&&Mod(5,n)^(n-1)==1 \\ Charles R Greathouse IV, Apr 12 2012
Extensions
Edited by Robert G. Wilson v, May 06 2003
Edited by N. J. A. Sloane, Jan 14 2009
Comments