A083739 Pseudoprimes to bases 2, 3, 5 and 7.
29341, 46657, 75361, 115921, 162401, 252601, 294409, 314821, 334153, 340561, 399001, 410041, 488881, 512461, 530881, 552721, 658801, 721801, 852841, 1024651, 1152271, 1193221, 1461241, 1569457, 1615681, 1857241, 1909001, 2100901
Offset: 1
Keywords
Examples
a(1)=29341 since it is the first number such that 2^(k-1) = 1 (mod k), 3^(k-1) = 1 (mod k), 5^(k-1) = 1 (mod k) and 7^(k-1) = 1 (mod k).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..7469 (terms below 10^12; terms 1..114 from R. J. Mathar)
- Jens Bernheiden, Pseudoprimes (in German).
- Fred Richman, Primality testing with Fermat's little theorem.
- Index entries for sequences related to pseudoprimes.
Programs
-
Maple
a001567 := [] : f := fopen("b001567.txt",READ) : bfil := readline(f) : while StringTools[WordCount](bfil) > 0 do if StringTools[FirstFromLeft]("#",bfil ) <> 0 then ; else bfil := sscanf(bfil,"%d %d") ; a001567 := [op(a001567), op(2,bfil) ] ; fi ; bfil := readline(f) ; od: fclose(f) : isPsp := proc(n,b) if n>3 and not isprime(n) and b^(n-1) mod n = 1 then true; else false; fi; end: isA001567 := proc(n) isPsp(n,2) ; end: isA005935 := proc(n) isPsp(n,3) ; end: isA005936 := proc(n) isPsp(n,5) ; end: isA005938 := proc(n) isPsp(n,7) ; end: isA083739 := proc(n) if isA001567(n) and isA005935(n) and isA005936(n) and isA005938(n) then true ; else false ; fi ; end: n := 1: for psp2 from 1 do i := op(psp2,a001567) ; if isA083739(i) then printf("%d %d ",n,i) ; n :=n+1 ; fi ; od: # R. J. Mathar, Feb 07 2008
-
Mathematica
Select[ Range[2113920], !PrimeQ[ # ] && PowerMod[2, # - 1, # ] == 1 && PowerMod[3, 1 - 1, # ] == 1 && PowerMod[5, # - 1, # ] == 1 && PowerMod[7, 1 - 1, # ] == 1 & ]
-
PARI
is(n)=!isprime(n)&&Mod(2,n)^(n-1)==1&&Mod(3,n)^(n-1)==1&&Mod(5,n)^(n-1)==1&&Mod(7,n)^(n-1)==1 \\ Charles R Greathouse IV, Apr 12 2012
Formula
a(n) = n-th positive integer k(>1) such that 2^(k-1) = 1 (mod k), 3^(k-1) = 1 (mod k), 5^(k-1) = 1 (mod k) and 7^(k-1) = 1 (mod k).
Extensions
Edited by Robert G. Wilson v, May 06 2003