This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083844 #45 Feb 16 2025 08:32:49 %S A083844 2,4,10,19,51,112,316,841,2378,6656,18822,54110,156081,456362,1339875, %T A083844 3954181,11726896,34900213,104248948,312357934,938457801,2826683630, %U A083844 8533327397,25814570672,78239402726,237542444180,722354138859,2199894223892 %N A083844 Number of primes of the form x^2 + 1 < 10^n. %C A083844 It is conjectured that there are infinitely many primes of the form x^2 + 1 (and thus this sequence never becomes constant), but this has not been proved. %C A083844 These primes can be found quickly using a sieve based on the fact that numbers of this form have at most one primitive prime factor (A005529). The sum of the reciprocals of these primes is 0.81459657... - _T. D. Noe_, Oct 14 2003 %D A083844 G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 17. %D A083844 P. Ribenboim, The Little Book of Big Primes. Springer-Verlag, 1991, p. 190. %H A083844 C. K. Caldwell, <a href="http://www.utm.edu/~caldwell/preprints/Heuristics.pdf">An Amazing Prime Heuristic</a> A pdf file. %H A083844 Jon Grantham, <a href="http://math.pseudoprime.com/2016/10/parallel-computation-of-primes-of-form.html">Parallel Computation of Primes of the form x^2+1</a> %H A083844 Jon Grantham and Hester Graves, <a href="https://arxiv.org/abs/2502.03513">Primes of the Form m^2+1 and Goldbach's 'Other Other' Conjecture</a>, arXiv:2502.03513 [math.NT], 2025. %H A083844 Apoloniusz Tyszka, Sławomir Kurpaska, <a href="https://philarchive.org/archive/TYSDASv104">Open problems that concern computable sets X, subset of N, and cannot be formally stated as they refer to current knowledge about X</a>, (2020). %H A083844 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LandausProblems.html">Landau's Problems</a>. %H A083844 Marek Wolf, <a href="http://arXiv.org/abs/0803.1456">Search for primes of the form m^2+1</a>, arXiv:0803.1456 [math.NT], 2008-2010. %e A083844 a(3) = 10 because the only primes or the form x^2 + 1 < 10^3 are the ten primes: 2, 5, 17, 37, 101, 197, 257, 401, 577, 677. %t A083844 c = 1; k = 2; (* except for the initial prime 2, all X's must be odd. *) Do[ While[ k^2 + 1 < 10^n, If[ PrimeQ[k^2 + 1], c++ ]; k += 2]; Print[c], {n, 1, 20}] %Y A083844 Cf. A005574, A002496, A083845, A083846, A083847, A083848, A083849, A214452, A214454, A214455. %Y A083844 Cf. A005529 (primitive prime factors of the sequence k^2+1). %K A083844 nonn %O A083844 1,1 %A A083844 _Harry J. Smith_, May 05 2003 %E A083844 Edited by _Robert G. Wilson v_, May 08 2003 %E A083844 More terms from _T. D. Noe_, Oct 14 2003 %E A083844 a(17)-a(22) from _Robert Gerbicz_, Apr 15 2009 %E A083844 a(23)-a(25) from Marek Wolf and Robert Gerbicz (code from Robert, computation done by Marek) _Robert Gerbicz_, Mar 13 2010 %E A083844 a(26)-a(28) from _Jon Grantham_, Jan 18 2017 %E A083844 a(28) corrected by _Jon Grantham_, Jan 30 2018