This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083846 #14 Feb 16 2025 08:32:49 %S A083846 5,37,677,8837,98597,972197,9985601,99800101,999444997,9999200017, %T A083846 99986234437,999920001601,9999799764517,99999200001601, %U A083846 999999202999697,9999993200001157,99999979750774757,999999848000005777 %N A083846 a(n) is the largest prime of the form x^2 + 1 <= 10^n. %C A083846 It is conjectured that the number of primes of the form x^2+1 is infinite and thus this sequence does not become a constant, but this has not been proved. It is easily shown that all terms greater than 5 end in 1 or 7. %D A083846 G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 17. %D A083846 P. Ribenboim, The Little Book of Big Primes. Springer-Verlag, 1991, p. 190. %H A083846 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LandausProblems.html">Landau's Problems.</a> %t A083846 Do[ k = Floor[ Sqrt[ 10^n] - 1]; While[ !PrimeQ[k^2 + 1], k-- ]; Print[k^2 + 1], {n, 1, 19}] %t A083846 lpf[n_]:=Module[{p=NextPrime[10^n,-1]},While[!IntegerQ[Sqrt[p-1]],p= NextPrime[ p,-1]];p]; Array[lpf,10] (* The program generates the first 10 terms of the sequence. *) (* _Harvey P. Dale_, Feb 11 2023 *) %Y A083846 Cf. A005574, A002496, A083844, A083845, A083847, A083848, A083849. %K A083846 nonn %O A083846 1,1 %A A083846 _Harry J. Smith_, May 05 2003 %E A083846 Edited and extended by _Robert G. Wilson v_, May 08 2003