cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083857 Square array T(n,k) of binomial transforms of generalized Fibonacci numbers, read by ascending antidiagonals, with n, k >= 0.

This page as a plain text file.
%I A083857 #47 Dec 30 2019 18:57:03
%S A083857 0,0,1,0,1,3,0,1,3,7,0,1,3,8,15,0,1,3,9,21,31,0,1,3,10,27,55,63,0,1,3,
%T A083857 11,33,81,144,127,0,1,3,12,39,109,243,377,255,0,1,3,13,45,139,360,729,
%U A083857 987,511,0,1,3,14,51,171,495,1189,2187,2584,1023,0,1,3,15,57,205,648
%N A083857 Square array T(n,k) of binomial transforms of generalized Fibonacci numbers, read by ascending antidiagonals, with n, k >= 0.
%C A083857 Row n >= 0 of the array gives the solution to the recurrence b(k) = 3*b(k-1) + (n-2) * a(k-2) for k >= 2 with a(0) = 0 and a(1) = 1. These are the binomial transforms of the rows of the generalized Fibonacci numbers A083856.
%H A083857 OEIS, <a href="https://oeis.org/transforms.html">Transformations of integer sequences</a>.
%F A083857 T(n, k) = ((3 + sqrt(4*n + 1))/2)^k / sqrt(4*n + 1) - ((3 - sqrt(4*n + 1))/2)^k / sqrt(4*n + 1) for n, k >= 0.
%F A083857 O.g.f. of row n >= 0: -x/(-1 + 3*x + (n-2)*x^2) . - _R. J. Mathar_, Nov 23 2007
%F A083857 T(n,k) = Sum_{i = 0..k} binomial(k,i)*A083856(n,i). - _Petros Hadjicostas_, Dec 24 2019
%e A083857 Array T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
%e A083857   0, 1, 3,  7, 15,  31,  63,  127,  255, ...
%e A083857   0, 1, 3,  8, 21,  55, 144,  377,  987, ...
%e A083857   0, 1, 3,  9, 27,  81, 243,  729, 2187, ...
%e A083857   0, 1, 3, 10, 33, 109, 360, 1189, 3927, ...
%e A083857   0, 1, 3, 11, 39, 139, 495, 1763, 6279, ...
%e A083857   0, 1, 3, 12, 45, 171, 648, 2457, 9315, ...
%e A083857   ...
%Y A083857 Rows include A000225 (n=0), A001906 (n=1), A000244 (n=2), A006190 (n=3), A007482 (n=4), A030195 (n=5), A015521 (n=6).
%Y A083857 Cf. A083856, A083861 (binomial transform), A083862 (main diagonal).
%K A083857 easy,nonn,tabl
%O A083857 0,6
%A A083857 _Paul Barry_, May 06 2003
%E A083857 Various sections edited by _Petros Hadjicostas_, Dec 24 2019