This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083878 #30 May 06 2025 10:33:18 %S A083878 1,3,11,45,193,843,3707,16341,72097,318195,1404491,6199581,27366049, %T A083878 120799227,533233019,2353803525,10390190017,45864515427,202455762443, %U A083878 893682966669,3944907462913,17413664010795,76867631824379 %N A083878 a(0)=1, a(1)=3, a(n) = 6*a(n-1) - 7*a(n-2), n >= 2. %C A083878 Binomial transform of A006012. Second binomial transform of A001333. %C A083878 Third binomial transform of A077957. Inverse binomial transform of A083879. - _Philippe Deléham_, Dec 01 2008 %H A083878 Michael De Vlieger, <a href="/A083878/b083878.txt">Table of n, a(n) for n = 0..1551</a> %H A083878 Yassine Otmani, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL28/Otmani/otmani10.html">The 2-Pascal Triangle and a Related Riordan Array</a>, J. Int. Seq. (2025) Vol. 28, Issue 3, Art. No. 25.3.5. See p. 12. %H A083878 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,-7). %F A083878 a(n) = ((3 - sqrt(2))^n + (3 + sqrt(2))^n)/2; %F A083878 a(n) = Sum_{k=0..n} C(n, 2k)*3^(n-2k)*2^k; %F A083878 G.f.: (1-3x)/(1-6x+7x^2); %F A083878 E.g.f.: exp(3x)*cosh(x*sqrt(2)). %F A083878 a(n) = Sum_{k=0..n} C(n, k)*2^((n-k)/2)(1+(-1)^(n-k))*3^k/2. - _Paul Barry_, Jan 22 2005 %F A083878 a(n) = Sum_{k=0..n} A098158(n,k)*3^(2k-n)*2^(n-k). - _Philippe Deléham_, Dec 01 2008 %F A083878 a(n) = A081179(n+1) - 3*A081179(n). - _R. J. Mathar_, Nov 10 2013 %F A083878 a(n) = Sum_{k=1..n} A056241(n, k) * 2^(k-1). - _J. Conrad_, Nov 23 2022 %t A083878 f[n_] := Simplify[(3 + Sqrt@2)^n + (3 - Sqrt@2)^n]/2; Array[f, 23, 0] (* _Robert G. Wilson v_, Oct 31 2010 *) %Y A083878 Cf. A083879, A056241, A081179, A098158. %K A083878 easy,nonn %O A083878 0,2 %A A083878 _Paul Barry_, May 08 2003