This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083879 #18 Aug 25 2019 15:31:01 %S A083879 1,4,18,88,452,2384,12744,68576,370192,2001472,10829088,58612096, %T A083879 317289536,1717746944,9299922048,50350919168,272608444672, %U A083879 1475954689024,7991119286784,43265588647936,234249039168512,1268274072276992 %N A083879 a(0)=1, a(1)=4, a(n) = 8*a(n-1) - 14*a(n-2), n >= 2. %C A083879 Binomial transform of A083878. %C A083879 4th binomial transform of A077957. Inverse binomial transform of A083880. - _Philippe Deléham_, Nov 30 2008 %C A083879 From _L. Edson Jeffery_, Apr 26 2011: (Start) %C A083879 Let G be the Gram matrix %C A083879 G = %C A083879 (4 1 0 1) %C A083879 (1 4 1 0) %C A083879 (0 1 4 -1) %C A083879 (1 0 -1 4) %C A083879 of A028997. Then a(n) = (1/4)*Trace(G^n). (End) %H A083879 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,-14). %F A083879 a(n) = 2^((n-2)/2)*(2*sqrt(2)-1)^n + 2^((n-2)/2)*(2*sqrt(2)+1)^n; %F A083879 a(n) = Sum_{k=0..n} C(n, 2k)*5^(n-2k)2^k. %F A083879 G.f.: (1-4x)/(1-8x+14x^2). %F A083879 E.g.f.: exp(4x)cosh(x*sqrt(2)). %F A083879 ((4+sqrt(2))^n + (4-sqrt(2))^n)/2. Offset=0. a(3)=88. - Al Hakanson (hawkuu(AT)gmail.com), Oct 15 2008 %F A083879 a(n) = Sum_{k=0..n} A098158(n,k)*2^(3*k-n). - _Philippe Deléham_, Nov 30 2008 %t A083879 LinearRecurrence[{8,-14},{1,4},30] (* _Harvey P. Dale_, May 08 2013 *) %Y A083879 Cf. A028997, A083880. %K A083879 easy,nonn %O A083879 0,2 %A A083879 _Paul Barry_, May 08 2003