A083905 G.f.: 1/(1-x) * sum(k>=0, (-1)^k*x^2^(k+1)/(1+x^2^k)).
0, 1, 0, 0, -1, 1, 0, 1, 0, 2, 1, 0, -1, 1, 0, 0, -1, 1, 0, -1, -2, 0, -1, 1, 0, 2, 1, 0, -1, 1, 0, 1, 0, 2, 1, 0, -1, 1, 0, 2, 1, 3, 2, 1, 0, 2, 1, 0, -1, 1, 0, -1, -2, 0, -1, 1, 0, 2, 1, 0, -1, 1, 0, 0, -1, 1, 0, -1, -2, 0, -1, 1, 0, 2, 1, 0, -1, 1, 0, -1, -2, 0, -1, -2, -3, -1
Offset: 1
Links
Programs
-
PARI
for(n=1, 100, l=ceil(log(n)/log(2)); t=polcoeff(1/(1-x)*sum(k=0, l, (-1)^k*(x^2^(k+1))/(1+x^2^k)) + O(x^(n+1)), n); print1(t", "))
-
PARI
a(n) = sum(i=0,logint(n,2)-1, if(!bittest(n,i),(-1)^i)); \\ Kevin Ryde, May 24 2021
Comments