This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083946 #12 Oct 31 2013 12:17:23 %S A083946 1,6,3,2,3,6,6,6,3,4,6,6,6,6,3,4,6,6,3,6,6,2,3,6,6,6,3,4,6,6,2,6,6,6, %T A083946 6,6,6,6,3,4,6,6,4,6,6,2,6,6,4,6,3,2,3,6,6,6,3,4,3,6,3,6,3,4,6,6,2,6, %U A083946 3,6,3,6,1,6,6,4,6,6,2,6,6,2,6,6,3,6,3,4,6,6,1,6,6,6,6,6,6,6,3,2,6,6,6,6,3 %N A083946 Least integer coefficients of A(x), where 1<=a(n)<=6, such that A(x)^(1/6) consists entirely of integer coefficients. %C A083946 More generally, "least integer coefficients of A(x), where 1<=a(n)<=m, such that A(x)^(1/m) consists entirely of integer coefficients", appears to have a unique solution for all m>0. Is this sequence periodic? %H A083946 Robert G. Wilson v, <a href="/A083946/b083946.txt">Table of n, a(n) for n = 0..3000</a>. %H A083946 N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.NT/0509316">On the Integrality of n-th Roots of Generating Functions</a>, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745. %t A083946 a[0] = 1; a[n_] := a[n] = Block[{k = 1, s = Sum[a[i]*x^i, {i, 0, n-1}]}, While[ Union[ IntegerQ /@ CoefficientList[ Series[(s+k*x^n)^(1/6), {x, 0, n}], x]] != {True}, k++ ]; k]; Table[ a[n], {n, 0, 104}] (* _Robert G. Wilson v_ *) %Y A083946 Cf. A083952, A083953, A083954, A083945. %K A083946 nonn %O A083946 0,2 %A A083946 _Paul D. Hanna_, May 09 2003 %E A083946 More terms from _Robert G. Wilson v_, Jul 26 2005