This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083969 #17 Apr 19 2021 01:07:39 %S A083969 4,18,33,42,43,57,73,76,78,87,91,93,97,102,112,114,120,141,151,177, %T A083969 186,193,196,219,261,267,276,280,300,307,318,322,342,352,364,366,402, %U A083969 435,438,445,457,462,468,484,511,580,582,633,646,651,679,706,745,774,783 %N A083969 Numbers n such that 2.n.3.n.5.n.7.n.11 is prime (dot means concatenation). %H A083969 Michael S. Branicky, <a href="/A083969/b083969.txt">Table of n, a(n) for n = 1..10000</a> %e A083969 2.4.3.4.5.4.7.4.11 = 2434547411, which is prime. Hence 4 is in the sequence. %t A083969 v={};Do[If[PrimeQ[FromDigits[Join[{2}, IntegerDigits[n], {3}, IntegerDigits[n], {5}, IntegerDigits[n], {7}, IntegerDigits[n], {1, 1}]]], v=Append[v, n]], {n, 1000}];v %t A083969 Select[Range[660], PrimeQ[FromDigits[Join[{2}, IntegerDigits[ # ], {3}, IntegerDigits[ # ], {5}, IntegerDigits[ # ], {7}, IntegerDigits[ # ], {1, 1}]]] &] (* _Stefan Steinerberger_, Jun 28 2007 *) %o A083969 (Python) %o A083969 from sympy import isprime %o A083969 def aupton(terms): %o A083969 n, alst = 1, [] %o A083969 while len(alst) < terms: %o A083969 s = str(n) %o A083969 t = int('2'+s+'3'+s+'5'+s+'7'+s+'11') %o A083969 if isprime(t): alst.append(n) %o A083969 n += 1 %o A083969 return alst %o A083969 print(aupton(55)) # _Michael S. Branicky_, Apr 18 2021 %Y A083969 Cf. A083677, A032711, A092115, A092117. %K A083969 base,easy,nonn %O A083969 1,1 %A A083969 _Farideh Firoozbakht_, Jun 19 2003 %E A083969 Edited by _Stefan Steinerberger_, Jun 28 2007 %E A083969 Edited by _N. J. A. Sloane_, Sep 18 2008 at the suggestion of _R. J. Mathar_