cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084060 a(n) = 1/2 + (1-6*n)*(-1)^n/2.

This page as a plain text file.
%I A084060 #25 Apr 26 2025 20:10:32
%S A084060 1,3,-5,9,-11,15,-17,21,-23,27,-29,33,-35,39,-41,45,-47,51,-53,57,-59,
%T A084060 63,-65,69,-71,75,-77,81,-83,87,-89,93,-95,99,-101,105,-107,111,-113,
%U A084060 117,-119,123,-125,129,-131,135,-137,141,-143,147,-149,153,-155,159,-161,165,-167,171,-173,177,-179
%N A084060 a(n) = 1/2 + (1-6*n)*(-1)^n/2.
%C A084060 abs(a(n+1)) = A047270(n).
%H A084060 Vincenzo Librandi, <a href="/A084060/b084060.txt">Table of n, a(n) for n = 0..10000</a>
%H A084060 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-1,1,1).
%F A084060 Unsigned version is sum of alternate terms of A032766 (numbers congruent to {0,1,3} mod 4): (1, 3, 4, 6, 7, 9, 10, 12, ...) such that a(n) = A032766(n-1) + A032766(n+1). - _Gary W. Adamson_, Sep 13 2007
%F A084060 G.f.: (1 + 4*x - 3*x^2 )/( (1-x)*(1+x)^2 ). - _R. J. Mathar_, Oct 25 2011
%F A084060 E.g.f.: (1+3*x)*cosh(x) - 3*x*sinh(x). - _G. C. Greubel_, Jan 03 2020
%p A084060 seq( (1 + (1-6*n)*(-1)^n)/2, n=0..60); # _G. C. Greubel_, Jan 03 2020
%t A084060 Table[(1 + (1-6*n)*(-1)^n)/2, {n,0,60}] (* _G. C. Greubel_, Jan 03 2020 *)
%t A084060 LinearRecurrence[{-1,1,1},{1,3,-5},100] (* _Harvey P. Dale_, Mar 05 2023 *)
%o A084060 (Magma) [1/2+(1-6*n)*(-1)^n/2: n in [0..60]]; // _Vincenzo Librandi_, Oct 26 2011
%o A084060 (PARI) vector(61, n, (1 - (7-6*n)*(-1)^n)/2) \\ _G. C. Greubel_, Jan 03 2020
%o A084060 (Sage) [(1 + (1-6*n)*(-1)^n)/2 for n in (0..60)] # _G. C. Greubel_, Jan 03 2020
%o A084060 (GAP) List([0..60], n-> (1 + (1-6*n)*(-1)^n)/2); # _G. C. Greubel_, Jan 03 2020
%Y A084060 Cf. A032766, A084056.
%K A084060 easy,sign
%O A084060 0,2
%A A084060 _Paul Barry_, May 11 2003