This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A084062 #9 Sep 08 2022 08:45:10 %S A084062 1,1,6,54,656,10000,182952,3899224,94769152,2584929024,78145100000, %T A084062 2592261435104,93586594074624,3651967705305088,153140949522798720, %U A084062 6866498202750000000,327772442129447518208,16593897777705323921408 %N A084062 Main diagonal of number array A084061. %H A084062 G. C. Greubel, <a href="/A084062/b084062.txt">Table of n, a(n) for n = 0..380</a> %F A084062 a(n) = ( (n + sqrt(n))^n + (n - sqrt(n))^n )/2. %p A084062 seq( `if`(n=0, 1, round(( (n + sqrt(n))^n + (n - sqrt(n))^n )/2)), n=0..20); # _G. C. Greubel_, Jan 03 2020 %t A084062 Table[If[n==0, 1, Round[((n+Sqrt[n])^n + (n-Sqrt[n])^n)/2]], {n,0,20}] (* _G. C. Greubel_, Jan 03 2020 *) %o A084062 (PARI) vector(21, n, if(n==0, 1, round( ( (n-1 + sqrt(n-1))^(n-1) + (n-1 - sqrt(n-1))^(n-1) )/2 )) ) \\ _G. C. Greubel_, Jan 03 2020 %o A084062 (Magma) [1] cat [Round(( (n +Sqrt(n))^n + (n -Sqrt(n))^n )/2): n in [1..20]]; // _G. C. Greubel_, Jan 03 2020 %o A084062 (Sage) [1]+[round(( (n +sqrt(n))^n + (n -sqrt(n))^n )/2) for n in (1..30)] # _G. C. Greubel_, Jan 03 2020 %Y A084062 Cf. A084063, A084095. %K A084062 easy,nonn %O A084062 0,3 %A A084062 _Paul Barry_, May 11 2003