This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A084063 #12 Sep 08 2022 08:45:10 %S A084063 1,1,7,63,761,11525,209539,4440527,107374753,2915352729,87771145551, %T A084063 2900744369039,104369641697881,4060189444664093,169777979925475531, %U A084063 7592652139022106975,361563242499379729537,18263719440778358953457 %N A084063 First subdiagonal of number array A084061. %H A084063 G. C. Greubel, <a href="/A084063/b084063.txt">Table of n, a(n) for n = 0..300</a> %F A084063 a(n) = ((n - sqrt(n+1))^n + (n + sqrt(n+1))^n)/2. %p A084063 seq( round(((n-sqrt(n+1))^n + (n+sqrt(n+1))^n)/2), n=0..20); # _G. C. Greubel_, Jan 09 2020 %t A084063 Table[Round[((n+Sqrt[n+1])^n + (n-Sqrt[n+1])^n)/2], {n,0,20}] (* _G. C. Greubel_, Jan 09 2020 *) %o A084063 (PARI) vector(21, n, round(((n-1-sqrt(n))^(n-1) + (n-1+sqrt(n))^(n-1))/2) ) \\ _G. C. Greubel_, Jan 09 2020 %o A084063 (Magma) [Round(((n-Sqrt(n+1))^n + (n+Sqrt(n+1))^n)/2): n in [0..20]]; // _G. C. Greubel_, Jan 09 2020 %o A084063 (Sage) [round(((n-sqrt(n+1))^n + (n+sqrt(n+1))^n)/2) for n in (0..20)] # _G. C. Greubel_, Jan 09 2020 %o A084063 (GAP) List([0..20], n-> ((n-Sqrt(n+1))^n + (n+Sqrt(n+1))^n)/2); # _G. C. Greubel_, Jan 09 2020 %Y A084063 Cf. A084061, A084062, A084095. %K A084063 easy,nonn %O A084063 0,3 %A A084063 _Paul Barry_, May 11 2003